CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

PYQ [IIT-JAM]

(Chapter 1 Kirchhoff's Law)

Q1. A battery with a constant emf ε and internal resistance r_i provides power to an external circuit with a load resistance made up by combining resistance $\mathit{R}_{\scriptscriptstyle L}$ and $2\mathit{R}_{\scriptscriptstyle L}$ in parallel. For what value of ${\it R}_{\it L}$ will the power delivered to the load be maximum?

(a)
$$R_L = \frac{r_i}{4}$$

(b)
$$R_L = \frac{r_i}{2}$$

(a)
$$R_L = \frac{r_i}{4}$$
 (b) $R_L = \frac{r_i}{2}$ (c) $R_L = \frac{2}{3}r_i$ (d) $R_L = \frac{3}{2}r_i$

(d)
$$R_L = \frac{3}{2}r_i$$

IIT-JAM 2009

PYQ [GATE]

For a given load resistance $R_L=4.7$ ohm, the power transfer efficiencies $\left(\eta=\frac{P_{load}}{P_{load}}\right)$ of a dc Q1. voltage source and a dc current source with internal resistances $\it R_{\rm l}$ and $\it R_{\rm 2}$, respectively, are equal. The product R_1R_2 in units of ohm² (rounded off to one decimal place) is_____

GATE-2019

Q2. The figure shows a constant current source charging a capacitor that is initially uncharged.

If the switch is closed at t = 0, which of the following plots depicts correctly the output voltage of the circuit as a function of time?

(c)

(d)

GATE-2010