CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

Worksheet

(Chapter 1 Basic Nuclear Properties)

	ivicy (iviuitiple choice Questions)				
Q1.	The distance of cl	osest approach \emph{b} of	an $lpha$ - particle of ${\sf I}$	kinetic energy E to a gold is	
	proportional to				
	(a) $\it E$	(b) E^{-1}	(c) E^2	(d) E^{-2}	
Q2.	The distance of closest approach of an $lpha$ - particle of kinetic energy $1.0 MeV$ to a gold nucleus				
	of atomic number 79 . Given that charge of an electron is $1.6{\times}10^{-19}$ coulomb.				
	(a) $2.275 \times 10^{-13} m$	(b) $2.275 \times 10^{-14} m$	(c) $2.275 \times 10^{-15} m$	(d) $2.275 \times 10^{-16} m$	
Q3.	1 order of nucleus radius is given by				
	(a) $10^{-6} m$	(b) $10^{-10} m$	(c) $10^{-12}m$	(d) $10^{-15} m$	
Q4.	If A is mass number	If A is mass number of any nucleus then radius is proportional to			
	(a) $A^{1/3}$	(b) $A^{2/3}$	(c) A^2	(d) A^{3}	
Q5.	A nucleus has a size of $10^{-15}m$. Consider an electron bound within a nucleus. The estimated				
	momentum of this electron is of the order of				
	(a) $6.6 \times 10^{-18} kgm/sec$		(b) $6.6 \times 10^{-19} kgm/sec$		
	(c) $6.6 \times 10^{-20} kgm/sec$		(d) $6.6 \times 10^{-22} kgm/sec$		
Q6.	According to fermi model of nucleus fermi momentum of proton is proportional to atomic				
	mass $\it A$ as				
	(a) $A^{1/3}$	(b) $A^{-1/3}$	(c) $A^{2/3}$	(d) $A^{-2/3}$	
Q7.	According to fermi model of nucleus fermi energy of proton is proportional to atomic mass A				
	as				
	(a) $A^{1/3}$	(b) $A^{-1/3}$	(c) $A^{2/3}$	(d) $A^{-2/3}$	
Q8.	According to fermi model of nucleus average energy of nucleus is proportional to atomic mass				
	$\it A$ as				
	(a) $A^{1/3}$	(b) $A^{-1/3}$	(c) $A^{2/3}$	(d) $A^{-2/3}$	

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

Q9. According to fermi model of nucleus total energy of nucleus is proportional to atomic mass A as

(a)
$$E_{total} = \left(\frac{9\pi}{4}\right)^{2/3} \frac{\hbar^2 c^2}{mc^2 R_0^2} \left[\frac{3}{10} A^2 + \frac{1}{6} \left(\frac{N-Z}{A}\right)^2 \right]$$

(b)
$$E_{total} = \left(\frac{9\pi}{4}\right)^{2/3} \frac{\hbar^2 c^2}{mc^2 R_o^2} \left[\frac{3}{10} A + \frac{1}{6} \left(\frac{N-Z}{A}\right) \right]$$

(c)
$$E_{total} = \left(\frac{9\pi}{4}\right)^{2/3} \frac{\hbar^2 c^2}{mc^2 R_0^2} \left[\frac{3}{10} A^2 + \frac{1}{6} \left(\frac{N-Z}{A}\right)^2 \right]$$

(d)
$$E_{total} = \left(\frac{9\pi}{4}\right)^{2/3} \frac{\hbar^2 c^2}{mc^2 R_0^2} \left[\frac{3}{10} A + \frac{1}{6} \left(\frac{N-Z}{A}\right)^2 \right]$$

NAT (Numerical Answer Type)

- Q10. Given the mass of iron nucleus as 55.85u and A=56, then nuclear density is given by $\alpha \times 10^{17} \, kg \, / \, m^3$, then the value of α is ______
- Q11. The radius of carbon atom C_6^{12} is α Fermi, then the value of α is ______
- Q12. The volume of nucleus of atom C_6^{12} is given by $\alpha (fermi)^3$, then the value of α is ______
- Q13. The density of nucleus of atom C_6^{12} is given by $lpha imes 10^{17} \, kg \, / \, m^3$, then the value of lpha is _____
- Q14. What will be the ratio of the sizes of Pb_{82}^{208} and Mg_{12}^{26} nuclei?
- Q15. The radius of a $_{29}Cu^{64}$ nucleus is measured to be 4.8×10^{-15} m. And the radius of a $_{12}Mg^{27}$ nucleus is $\alpha\times10^{-15}m$. Then what will be value of α ?
- Q16. The mean momentum \vec{p} of a nucleon in a nucleus of mass number A and atomic number Z depends on A and Z. If p_c is momentum of carbon nucleus and p_I is momentum of iron nucleus then ratio of $\frac{p_c}{p_I}$ is ______
- Q17. For the carbon atom C_6^{12} , the average value of momentum is given by $\alpha \times 10^{-19}$. Then what will be value of α ?
- Q18. According to fermi model of nucleus, Fermi momentum of proton is proportional to atomic number as Z^{α} . Then the value of α is ______
- Q19. According to fermi model of nucleus, Fermi energy of proton is proportional to atomic number as Z^{α} , Then the value of α is ______