CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics ## Worksheet # (Chapter 1 Basic Nuclear Properties) | | ivicy (iviuitiple choice Questions) | | | | | |-----|--|---|-----------------------------------|---------------------------------|--| | Q1. | The distance of cl | osest approach \emph{b} of | an $lpha$ - particle of ${\sf I}$ | kinetic energy E to a gold is | | | | proportional to | | | | | | | (a) $\it E$ | (b) E^{-1} | (c) E^2 | (d) E^{-2} | | | Q2. | The distance of closest approach of an $lpha$ - particle of kinetic energy $1.0 MeV$ to a gold nucleus | | | | | | | of atomic number 79 . Given that charge of an electron is $1.6{\times}10^{-19}$ coulomb. | | | | | | | (a) $2.275 \times 10^{-13} m$ | (b) $2.275 \times 10^{-14} m$ | (c) $2.275 \times 10^{-15} m$ | (d) $2.275 \times 10^{-16} m$ | | | Q3. | 1 order of nucleus radius is given by | | | | | | | (a) $10^{-6} m$ | (b) $10^{-10} m$ | (c) $10^{-12}m$ | (d) $10^{-15} m$ | | | Q4. | If A is mass number | If A is mass number of any nucleus then radius is proportional to | | | | | | (a) $A^{1/3}$ | (b) $A^{2/3}$ | (c) A^2 | (d) A^{3} | | | Q5. | A nucleus has a size of $10^{-15}m$. Consider an electron bound within a nucleus. The estimated | | | | | | | momentum of this electron is of the order of | | | | | | | (a) $6.6 \times 10^{-18} kgm/sec$ | | (b) $6.6 \times 10^{-19} kgm/sec$ | | | | | (c) $6.6 \times 10^{-20} kgm/sec$ | | (d) $6.6 \times 10^{-22} kgm/sec$ | | | | Q6. | According to fermi model of nucleus fermi momentum of proton is proportional to atomic | | | | | | | mass $\it A$ as | | | | | | | (a) $A^{1/3}$ | (b) $A^{-1/3}$ | (c) $A^{2/3}$ | (d) $A^{-2/3}$ | | | Q7. | According to fermi model of nucleus fermi energy of proton is proportional to atomic mass A | | | | | | | as | | | | | | | (a) $A^{1/3}$ | (b) $A^{-1/3}$ | (c) $A^{2/3}$ | (d) $A^{-2/3}$ | | | Q8. | According to fermi model of nucleus average energy of nucleus is proportional to atomic mass | | | | | | | $\it A$ as | | | | | | | (a) $A^{1/3}$ | (b) $A^{-1/3}$ | (c) $A^{2/3}$ | (d) $A^{-2/3}$ | | | | | | | | | ## CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics Q9. According to fermi model of nucleus total energy of nucleus is proportional to atomic mass A as (a) $$E_{total} = \left(\frac{9\pi}{4}\right)^{2/3} \frac{\hbar^2 c^2}{mc^2 R_0^2} \left[\frac{3}{10} A^2 + \frac{1}{6} \left(\frac{N-Z}{A}\right)^2 \right]$$ (b) $$E_{total} = \left(\frac{9\pi}{4}\right)^{2/3} \frac{\hbar^2 c^2}{mc^2 R_o^2} \left[\frac{3}{10} A + \frac{1}{6} \left(\frac{N-Z}{A}\right) \right]$$ (c) $$E_{total} = \left(\frac{9\pi}{4}\right)^{2/3} \frac{\hbar^2 c^2}{mc^2 R_0^2} \left[\frac{3}{10} A^2 + \frac{1}{6} \left(\frac{N-Z}{A}\right)^2 \right]$$ (d) $$E_{total} = \left(\frac{9\pi}{4}\right)^{2/3} \frac{\hbar^2 c^2}{mc^2 R_0^2} \left[\frac{3}{10} A + \frac{1}{6} \left(\frac{N-Z}{A}\right)^2 \right]$$ ### NAT (Numerical Answer Type) - Q10. Given the mass of iron nucleus as 55.85u and A=56, then nuclear density is given by $\alpha \times 10^{17} \, kg \, / \, m^3$, then the value of α is ______ - Q11. The radius of carbon atom C_6^{12} is α Fermi, then the value of α is ______ - Q12. The volume of nucleus of atom C_6^{12} is given by $\alpha (fermi)^3$, then the value of α is ______ - Q13. The density of nucleus of atom C_6^{12} is given by $lpha imes 10^{17} \, kg \, / \, m^3$, then the value of lpha is _____ - Q14. What will be the ratio of the sizes of Pb_{82}^{208} and Mg_{12}^{26} nuclei? - Q15. The radius of a $_{29}Cu^{64}$ nucleus is measured to be 4.8×10^{-15} m. And the radius of a $_{12}Mg^{27}$ nucleus is $\alpha\times10^{-15}m$. Then what will be value of α ? - Q16. The mean momentum \vec{p} of a nucleon in a nucleus of mass number A and atomic number Z depends on A and Z. If p_c is momentum of carbon nucleus and p_I is momentum of iron nucleus then ratio of $\frac{p_c}{p_I}$ is ______ - Q17. For the carbon atom C_6^{12} , the average value of momentum is given by $\alpha \times 10^{-19}$. Then what will be value of α ? - Q18. According to fermi model of nucleus, Fermi momentum of proton is proportional to atomic number as Z^{α} . Then the value of α is ______ - Q19. According to fermi model of nucleus, Fermi energy of proton is proportional to atomic number as Z^{α} , Then the value of α is ______