CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics ### PYQ [GATE] # (Chapter 3 Crystal Binding) | Q1. | The binding energy per molecule of $NaCl$ (lattice parameter is $0.563nm$) is $7.956eV$. The | |-----|---| | | repulsive term of the potential is of the form $\frac{K}{r^9}$, where K is a constant. The value of the | | | Modelung constant is (upto three decimal places) | | | (Electron charge $e = -1.6 \times 10^{-19} C$; $\varepsilon_0 = 8.854 \times 10^{-12} C^2 N^{-1} m^{-2}$) | **GATE-2015** The total energy of an inert-gas crystal is given by $E(R) = \frac{0.5}{R^{12}} - \frac{1}{R^6}$ (in eV), where R is the Q2. inter-atomic spacing in Angstroms. The equilibrium separation between the atoms is Angstroms. (up to two decimal places) **GATE-2017** The total energy of an ionic solid is given by an expression $E = -\frac{\alpha e^2}{4\pi\epsilon} + \frac{B}{r^9}$ where α is Q3. Madelung constant, r is the distance between the nearest neighbours in the crystal and B is a constant. If \emph{r}_{0} is the equilibrium separation between the nearest neighbours then the value of B is (a) $$\frac{\alpha e^2 r_0^8}{36\pi\varepsilon_0}$$ (b) $$\frac{\alpha e^2 r_0^8}{4\pi\varepsilon_0}$$ of σ (rounded off to two decimal places) is______ (c) $$\frac{2\alpha e^2 r_0^{10}}{9\pi\varepsilon_0}$$ (a) $$\frac{\alpha e^2 r_0^8}{36\pi\varepsilon_0}$$ (b) $\frac{\alpha e^2 r_0^8}{4\pi\varepsilon_0}$ (c) $\frac{2\alpha e^2 r_0^{10}}{9\pi\varepsilon_0}$ (d) $\frac{\alpha e^2 r_0^{10}}{36\pi\varepsilon_0}$ **GATE-2013** Q4. Consider a three-dimensional crystal of N inert gas atoms. The total energy is given by $U(R) = 2N \in \left| p\left(\frac{\sigma}{R}\right)^{12} - q\left(\frac{\sigma}{R}\right)^{6} \right|$, where p = 12.13, q = 14.45 and R is the nearest neighbour distance between two atoms. The two constants, \in and R, have the dimensions of energy and length, respectively. The equilibrium separation between two nearest neighbour atoms in units **GATE-2019** Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com # **PYQ [NET]** Q1. The potential of a diatomic molecule as a function of the distance r between the atoms is given by $V(r) = -\frac{a}{r^6} + \frac{b}{r^{12}}$. The value of the potential at equilibrium separation between the atoms is: (a) $$-4a^2/b$$ (b) $-2a^2/b$ (c) $-a^2/2b$ (d) $-a^2/4b$ (b) $$-2a^2/b$$ (c) $$-a^2/2b$$ (d) $$-a^2/4b$$ NET/JRF (DEC-2011) Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com #### Worksheet Q1. The potential energy of a diatomic molecule in terms of inter atomic distance R is given by $$U(R) = -\frac{A}{R^m} + \frac{B}{R^n},$$ where A,B,m and n are constants characteristics for the MX -molecules. Attractive and repulsive exponents are related through: (a) $n \ll m$ (b) n < m (c) n > m (d) $n \gg m$ The potential energy of a diatomic molecule in terms inter atomic distance R is given by Q2. $$U(R) = -\frac{A}{R^m} + \frac{B}{R^n}$$, where A,B,m and n are constant characteristics for the MX - molecules. The equilibrium separation R_{ϵ} , is obtained as: (a) $\left(\frac{nA}{mB}\right)^{\frac{1}{n-m}}$ (b) $\left(\frac{nA}{mB}\right)^{\frac{1}{m-n}}$ (c) $\left(\frac{nB}{mA}\right)^{\frac{1}{m-n}}$ (d) $\left(\frac{nB}{mA}\right)^{\frac{1}{n-m}}$ Q3. The potential energy of a diatomic molecule in terms of inter atomic separation R is given by $$U(R) = -\frac{\alpha}{R^4} + \frac{\beta}{R^{12}}$$ The equilibrium separation is obtained as: (a) $(3\beta/\alpha)^{1/8}$ (b) $(3\beta/\alpha)^{1/6}$ (c) $(3\beta/\alpha)^{1/4}$ (d) $(3\beta/\alpha)^{1/2}$ Q4. The potential energy of a system of two atoms is given by $$U = -\frac{A}{R^6} + \frac{B}{R^{12}}$$ If the atoms form a stable bond with bond length $\stackrel{\circ}{3}$ and the bond energy 1.8eV the value of the constant A is: (a) $1.9 \times 10^{-76} Jm^6$ (b) $2.9 \times 10^{-76} Jm^6$ (c) $3.9 \times 10^{-76} Jm^6$ (d) $4.9 \times 10^{-76} Jm^6$ Q5. The potential energy of a system of two atoms is given by $$U(R) = -\frac{A}{R^6} + \frac{B}{R^{12}}$$ If the atoms form a stable bond with bond length $3\,\mathrm{\mathring{A}}$ and the bond energy 1.8eV the critical separation R_c is obtained as: (a) 1.33 Å (b) 2.33 Å (c) $3.33 \stackrel{0}{A}$ (d) 4.33 Å #### CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics | Q6. | If the equilibrium | separation | between | cesium | and | chlorine | atoms | is 3.56 $\overset{\scriptscriptstyle{0}}{\mathrm{A}}$, | A = 1.76 | and | |-----|---|------------|---------|--------|-----|----------|-------|---|----------|-----| | | n = 11.5, the potential energy of $CsCl$ at equilibrium is: | | | | | | | | | | (a) -2.5eV (b) -4.5eV (c) -6.5eV (d) -8.5eV A pair of Li^+ and Cl^- ion with their radii $0.60\,\mathrm{A}$ and $1.81\,\mathrm{A}$ touch each other, the attractive Q7. force between them is: (a) $1.96 \times 10^{-9} N$ (b) $2.96 \times 10^{-9} N$ (c) $3.96 \times 10^{-9} N$ (d) $4.96 \times 10^{-9} N$ Q8. Show that the Madelung constant A for an infinite linear chain of ions of alternating charge at an equilibrium separation R_e is: (a) 0.3863 (b) 1.3863 (c) 2.3863 (d) 3.3863 Q9. Show that the potential energy of two particles in stable configuration (at equilibrium) with m=2 and n=10 is equal to: (a) $-\frac{1}{5} \left(\frac{A}{R_a^2} \right)$ (b) $-\frac{2}{5} \left(\frac{A}{R_a^2} \right)$ (c) $-\frac{3}{5} \left(\frac{A}{R_a^2} \right)$ (d) $-\frac{4}{5} \left(\frac{A}{R_a^2} \right)$ Assume a repulsive potential of the form B/R^9 acts between the neighboring ions of NaCl. If Q10. the nearest neighbor distance is $2.81\mbox{\ensuremath{\ensuremath{A}}}$ and the Madelung constant is 1.7476 , the compressibility NaCl is (a) $2.48 \times 10^{-11} m^2 N$ (b) $3.48 \times 10^{-11} m^2 N$ (c) $4.48 \times 10^{-11} m^2 N$ (d) $5.48 \times 10^{-11} m^2 N$