CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

PYQ [IIT-JAM]

(Chapter 3 Radioactivity)

		(Silap o						
Q1.	A particular rac	dioisotope has a half	life of 5 days. In 15	days the probability of decay	in			
	percentage will l	oe						
				IIT-JAM 2016				
Q2.	$^{60}_{27}Co$ is a radio	pactive nucleus of h	alf-life $2\ln 2 \times 10^8 s$.	The activity of $10g$ of $^{60}_{27}Co$	in			
	disintegrations per second is,							
	(a) $\frac{1}{5} \times 10^{10}$	(b) 5×10^{10}	(c) $\frac{1}{5} \times 10^{14}$	(d) 5×10^{14}				
Q3.	The california of a		d	IIT-JAM 2012	-1			
	The activity of a radioactive sample is decreased to 75% of the initial value after 30 days. The							
	half-life (in days) of the sample is approximately							
	[You may use $\ln 3 \approx 1.1$, $\ln 4 \approx 1.4$]							
	(a) 38	(b) 45	(c) 59	(d) 69				
Q4.	IIT-JAM 2008 In a typical human body, the amount of radioactive ^{40}K is 3.24×10^{-5} percent of its mass. The							
	activity due to ^{40}K in a human body of mass $70\mathrm{kg}$ iskBq.							
	(Round off to 2 decimal places)							
	(Half-life of $^{40}K=3.942\times10^{16}\mathrm{S}$, Avogadro's number $N_A=6.022\times10^{23}\mathrm{mol}^{-1}$							
				IIT-JAM 2019				
Q5.	An atomic nucleus X with half-life $T_{\!\scriptscriptstyle X}$ decays to a nucleus Y , which has half-life $T_{\!\scriptscriptstyle Y}$. The							
	condition (s) for secular equilibrium is (are)							
	(a) $T_X \simeq T_Y$	(b) $T_X < T_Y$	(c) $T_X \ll T_Y$	(d) $T_X \gg T_Y$				
				IIT-JAM 2019				
Q6.	For an atomic nucleus with atomic number ${\it Z}$ and mass number ${\it A}$, which of the following is							
	(are) correct?							
	(a) Nuclear matter and nuclear charge are distributed identically in the nuclear volume							
	(b) Nuclei with $Z>83$ and $A>209$ emit α - radiation							
	(c) The surface contribution to the binding energy is proportional to $\it A^{2/3}$							
	(d) eta - decay occurs when the proton to neutron ratio is large, but not when it is small							
				IIT-JAM 2017				

	CS	IR NET-JRF, GATE, IIT-	JAM, JEST, TIFF	R and GRE for Physics				
Q7.	The radioactive nuclei ^{40}K decay to $^{40}\!Ar$ with a half-life of $1.25{\times}10^9$ years. The $\frac{^{40}\!K}{^{40}\!Ar}$ isotopic							
	ratio for a particular rock is found to be 50 . The age of the rock is $m imes 10^7$ years. The value of m							
	is (Round off to 2 decimal places)							
				IIT-JAM 2020				
		PY	Q [GATE]	I				
Q1.	An $lpha$ particle is emitted by a $^{230}_{90}Th$ nucleus. Assuming the potential to be purely Coulombic							
	beyond the point of separation, the height of the Coulomb barrier is $_________MeV$ (up to two							
	decimal places).							
	$\left(\frac{e^2}{4\pi \in_0} = 1.44 \text{MeV-fm}, r_0 = 1.30 \text{fm}\right)$							
				GATE-2018				
Q2.	Consider the reaction $^{54}_{25} Mn + e^- ightarrow ^{54}_{24} Cr + X$. The particle X is							
	(a) γ	(b) v_e	(c) n	(d) $\pi^{\scriptscriptstyle 0}$				
				GATE-2016				
Q3.	In the nuclear reaction $^{13}C_6 + u_e ightarrow ^{13}\!N_7 + X$, the particle X is							
	(a) An electron	(b) An anti-electron	(c) A muon	(d) A pion				
				GATE-2017				
Q4.	A radioactive element \boldsymbol{X} has a half-life of 30 hours. It decays via alpha, beta and gamma							
	emissions with the branching ratio for beta decay being $0.75.$ The partial half-life for beta							
	decay in unit of hours is							

GATE-2019

PYQ [NET-JRF]

Q1. A radioactive element X decays to Y, which in turn decays to a stable element Z. The decay constant from X to Y is λ_1 , and that from Y to Z is λ_2 . If, to begin with, there are only N_0 atoms of X, at short times ($t \ll \frac{1}{\lambda_1}$ as well as $\frac{1}{\lambda_2}$) the number of atoms of Z will be

(a)
$$\frac{1}{2}\lambda_1\lambda_2N_0t^2$$

(b)
$$\frac{\lambda_1 \lambda_2}{2(\lambda_1 + \lambda_2)} N_0 t$$

(c)
$$(\lambda_1 + \lambda_2)^2 N_0 t^2$$

(d)
$$(\lambda_1 + \lambda_2) N_0 t$$

NET/JRF (JUNE-2016)