Worksheet

(Chapter 3 Crystal Binding)

Q1. The potential energy of a diatomic molecule in terms of inter atomic distance R is given by

$$U(R) = -\frac{A}{R^m} + \frac{B}{R^n},$$

where A,B,m and n are constants characteristics for the MX -molecules. Attractive and repulsive exponents are related through:

- (a) $n \ll m$
- (b) n < m
- (c) n > m
- (d) $n \gg m$

The potential energy of a diatomic molecule in terms inter atomic distance R is given by Q2.

$$U(R) = -\frac{A}{R^m} + \frac{B}{R^n},$$

where A, B, m and n are constant characteristics for the MX - molecules. The equilibrium separation R_{ρ} , is obtained as:

(a)
$$\left(\frac{nA}{mB}\right)^{\frac{1}{n-m}}$$
 (b) $\left(\frac{nA}{mB}\right)^{\frac{1}{m-n}}$ (c) $\left(\frac{nB}{mA}\right)^{\frac{1}{m-n}}$

(b)
$$\left(\frac{nA}{mB}\right)^{\frac{1}{m-1}}$$

(c)
$$\left(\frac{nB}{mA}\right)^{\frac{1}{m-1}}$$

(d)
$$\left(\frac{nB}{mA}\right)^{\frac{1}{n-n}}$$

The potential energy of a diatomic molecule in terms of inter atomic separation R is given by Q3.

$$U(R) = -\frac{\alpha}{R^4} + \frac{\beta}{R^{12}}$$

The equilibrium separation is obtained as:

(a)
$$(3\beta/\alpha)^{1/8}$$
 (b) $(3\beta/\alpha)^{1/6}$ (c) $(3\beta/\alpha)^{1/4}$ (d) $(3\beta/\alpha)^{1/2}$

(b)
$$(3\beta/\alpha)^{1/6}$$

(c)
$$(3\beta/\alpha)^{1/4}$$

(d)
$$(3\beta/\alpha)^{1/2}$$

Q4. The potential energy of a system of two atoms is given by

$$U = -\frac{A}{R^6} + \frac{B}{R^{12}}$$

If the atoms form a stable bond with bond length 3 Å and the bond energy 1.8eV the value of the constant A is:

- (a) $1.9 \times 10^{-76} Jm^6$ (b) $2.9 \times 10^{-76} Jm^6$ (c) $3.9 \times 10^{-76} Jm^6$ (d) $4.9 \times 10^{-76} Jm^6$

Q5. The potential energy of a system of two atoms is given by

$$U(R) = -\frac{A}{R^6} + \frac{B}{R^{12}}$$

If the atoms form a stable bond with bond length $3\,\mathrm{\mathring{A}}$ and the bond energy 1.8eV the critical separation R_c is obtained as:

${\sf CSIR}\,{\sf NET-JRF},\,{\sf GATE},\,{\sf IIT-JAM},\,{\sf JEST},\,{\sf TIFR}\,{\sf and}\,\,{\sf GRE}\,{\sf for}\,{\sf Physics}$

			0
(a)	1	.33	A

If the equilibrium separation between cesium and chlorine atoms is $3.56\,\mathrm{\mathring{A}}$, A=1.76 and Q6. n = 11.5, the potential energy of CsCl at equilibrium is:

(a) -2.5eV

(b)
$$-4.5eV$$

(c)
$$-6.5eV$$

(d)
$$-8.5eV$$

A pair of Li^+ and Cl^- ion with their radii $0.60 \, {\overset{_0}{
m A}}$ and $1.81 \, {\overset{_0}{
m A}}$ touch each other, the attractive Q7. force between them is:

(a) $1.96 \times 10^{-9} N$

(b)
$$2.96 \times 10^{-9} N$$

(b)
$$2.96 \times 10^{-9} N$$
 (c) $3.96 \times 10^{-9} N$ (d) $4.96 \times 10^{-9} N$

(d)
$$4.96 \times 10^{-9} N$$

Q8. Show that the Madelung constant A for an infinite linear chain of ions of alternating charge at an equilibrium separation $R_{\!\scriptscriptstyle e}$ is:

(a) 0.3863

(b) 1.3863

(c) 2.3863

(d) 3.3863

Show that the potential energy of two particles in stable configuration (at equilibrium) with Q9. m=2 and n=10 is equal to:

(b)
$$-\frac{2}{5} \left(\frac{A}{R_e^2} \right)$$

(c)
$$-\frac{3}{5} \left(\frac{A}{R_e^2} \right)$$

(a)
$$-\frac{1}{5} \left(\frac{A}{R_e^2} \right)$$
 (b) $-\frac{2}{5} \left(\frac{A}{R_e^2} \right)$ (c) $-\frac{3}{5} \left(\frac{A}{R_e^2} \right)$

Assume a repulsive potential of the form B/R^9 acts between the neighboring ions of NaCl. If Q10. the nearest neighbor distance is $2.81 \mbox{\AA}$ and the Madelung constant is 1.7476 , the compressibility NaCl is

(b)	3.48×10^{-1}	$^{-11}m^2\lambda$

(c)
$$4.48 \times 10^{-11} m^2 N$$

(a)
$$2.48 \times 10^{-11} m^2 N$$
 (b) $3.48 \times 10^{-11} m^2 N$ (c) $4.48 \times 10^{-11} m^2 N$ (d) $5.48 \times 10^{-11} m^2 N$

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com