## **Class Test**

## (STR-Lorentz Transformation)

- Q1. Consider an inertial frame S' moving at speed  $\frac{c}{2}$  away from another inertial frame S along the common x-x' axis, where c is the speed of light. As observed from S', a particle is moving with speed  $\frac{c}{2}$  in the y' direction, as shown in the figure. The speed of the particle as seen from S is:

  (a) 0.3c(b) 0.5c(c) 0.6c(d) 0.9c
- Q2. Two events  $E_1$  and  $E_2$  take place in an inertial frame S with respective time space coordinates (in SI units):  $E_1\left(t_1=0,\vec{r_1}=0\right)$  and  $E_2\left(t_2=0,x_2=10^8,y_z=0,z_2=0\right)$ . Another inertial frame S' is moving with respect to S with a velocity  $\vec{v}=0.8\,c\,\hat{i}$ . The time difference  $\left(t_2'-t_1'\right)$  as observed in S' is
  - (a) 0.33
- (b) 0.44
- (c) 0.55
- (d) 0.66
- Q3. Muons are elementary particles produced in the upper atmosphere. They have a life time of  $2.2\,\mu s$ . Consider muons which are traveling vertically towards the earth's surface at a speed of 0.998c. For an observer on earth, the height of the atmosphere above the surface of the earth is  $10.4\,km$ . Which of the following statements are true?
  - (a) The muons can never reach earth's surface
  - (b) The apparent thickness of earth's atmosphere in muon's frame of reference is  $0.96\,km$
  - (c) The lifetime of muons in earth's frame of reference is  $34.8 \mu s$
  - (d) The lifetime of muons in earth's frame of reference is  $50.0 \, \mu s$
- Q4. In an inertial frame S , two events A and B take place at  $\left(ct_A=0,\vec{r}_A=0\right)$  and  $\left(ct_B=0,\vec{r}_B=2\,\hat{y}\right)$ , respectively. The times at which these events take place in a frame S' moving with a velocity  $0.6c\,\hat{y}$  with respect to S are given by
  - (a)  $ct'_A = 0$ ;  $ct'_B = -\frac{3}{2}$

(b)  $ct'_A = 0$ ;  $ct'_B = 0$ 

(c)  $ct'_A = 0$ ;  $ct'_B = \frac{3}{2}$ 

(d)  $ct'_A = 0$ ;  $ct'_B = \frac{1}{2}$ 

- Q5. A rod of proper length  $l_0$  oriented parallel to the x-axis moves with speed 2c/3 along the x-axis in the S-frame, where c is the speed of light in free space. The observer is also moving along the x-axis with speed c/2 with respect to the S-frame. The length of the rod as measured by the observer is
  - (a)  $0.35 l_0$
- (b)  $0.48 l_0$
- (c)  $0.87 l_0$
- (d)  $0.97 l_0$
- Q6. Two spaceships A and B, each of the same rest length L, are moving in the same direction with speeds  $\frac{4c}{5}$  and  $\frac{3c}{5}$ , respectively, where c is the speed of light. As measured by B, the time taken by A to completely overtake B [see figure below] in units of L/c is



- Q7. Consider three inertial frames of reference A,B and C . the frame B moves with a velocity  $\frac{c}{2}$  with respect to A, and C moves with a velocity  $\frac{c}{10}$  with respect to B in the same direction.

  - (a) 0.42c
- (b) 0.57c

The velocity of C as measured in A is

- (c) 0.14c
- (d) 0.25c
- Q8. If fluid is moving with velocity v = 0.8c with respect to stationary narrow tube. If light pulse enter into fluid of refractive index n 1.5 in the direction of flow. What is the speed of light pulse measured by observer who is stationary with respect to tube?
  - (a) c
- (b) 0.35c
- (c) 0.66c
- (d) 0.95c
- Q9. A light beam is emitted at an angle  $\theta_0$  with respect to the x'- axis in S frame which is moving with velocity  $u\hat{i}$ . Then the angle  $\theta$  the beam makes with respect to x- axis in S' frame is

(a) 
$$\sin \theta = \frac{\sin \theta_0 \sqrt{1 - \frac{u^2}{c^2}}}{1 + \frac{u}{c} \cos \theta_0}$$

(b) 
$$\sin \theta = \frac{\sin \theta_0 \sqrt{1 - \frac{u^2}{c^2}}}{1 + \frac{u}{c} \sin \theta_0}$$

(c) 
$$\sin \theta = \frac{\cos \theta_0 + \frac{u}{c}}{1 + \frac{u}{c} \cos \theta_0}$$

(d) 
$$\sin \theta = \frac{1 + \frac{u \cos \theta_0}{c}}{\cos \theta_0 + \frac{u}{c}}$$

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

Q10. The area of a disc in its rest frame S is equal to 1 (in some units). The disc will appear distorted to an observer O moving with a speed u = 0.8c with respect to S along the plane of the disc. The area of the disc measured in the rest frame of the observer O is (c is the speed of light in vacuum)

(a) 0.6

(b) 0.7

(c) 0.8

(d) 0.9