Class Test

(STR-Mass Energy Equivalence & Four Vectors)

Q1.	According to the special theory of relativity, the speed v of a free particle of mass m and total
	energy $E = 2mc^2$ is:

(a) $\frac{\sqrt{3}}{2}c$

(b) $\frac{1}{2}c$ (c) $\frac{\sqrt{5}}{4}c$ (d) $\frac{1}{4}c$

The muon has rest mass $105 MeV/c^2$ and mean life time $2\mu s$ in its rest frame. The mean time Q2. traversed by a muon of energy 210MeV before decaying is approximately:

(a) $2\mu s$

(b) $3\mu s$

(c) $4\mu s$

A particle of mass M decays at rest into a massless particle and another particle of mass $\frac{M}{2}$. Q3. The magnitude of the momentum of each of these relativistic particles is:

(a) $\frac{\sqrt{3}}{2}Mc$

(b) $\frac{\sqrt{3}}{4}Mc$ (c) $\frac{\sqrt{3}}{8}Mc$

A particle of rest mass m_0 whose total energy is twice the rest mass energy collide with Q4 identical particle at rest. If the stick together and make a composite mass. Find the rest mass of composite mass.

(a) $2m_0$

(b) $4m_0$

(c) $\sqrt{3}m_0$

From the S frame total energy and momentum is given by E and $\vec{p} = (p_x, p_y, p_z)$ respectively. Q5. If another frame S' is moving with velocity \hat{vj} then Total energy from S' frame is

(a) $E' = \frac{E - vp_x}{\sqrt{1 - \frac{v^2}{c^2}}}$ (b) $E' = \frac{E + vp_x}{\sqrt{1 - \frac{v^2}{c^2}}}$ (c) $E' = \frac{E - vp_y}{\sqrt{1 - \frac{v^2}{c^2}}}$

A relativistic particle of mass m and charge e is moving in a uniform electric field of strength ε . Q6. Starting from rest at t=0, how much time will it take to reach the speed $\frac{c}{2}$?

(a) $\frac{1}{\sqrt{3}} \frac{mc}{e\varepsilon}$ (b) $\frac{mc}{e\varepsilon}$ (c) $\sqrt{2} \frac{mc}{e\varepsilon}$ (d) $\sqrt{\frac{3}{2}} \frac{mc}{e\varepsilon}$

- The light source is moving towards observer with velocity $\frac{\sqrt{3}}{2}c$ at angle $\theta = 30^{\circ}$. If v_0 is Q7. frequency at rest frame of source. The frequency measured by observer is
 - (a) ν_0
- (b) $1.5v_0$
- (c) $2v_0$
- (d) $3v_0$
- If x', t' is position and time measured from S' frame and x, t are measured from S frame if Q8. origin of S' moving with respect to S frame . if $\beta = \frac{v}{c}$ Then $\frac{\text{one } x' \text{ unit}}{\text{one } x \text{ unit}}$ given by
 - (a) 1

- (c) $\sqrt{\frac{1+\beta^2}{1-\beta^2}}$ (c) $\sqrt{\frac{1-\beta^2}{1+\beta^2}}$
- If $\vec{A} = (A_0, A_1, A_2, A_3)$, $\vec{B} = (B_0, B_1, B_2, B_3)$ are four vectors the inner product $\vec{A} \cdot \vec{B}$ is defined as Q9.
 - (a) $\vec{A}.\vec{B} = A_0B_0 + A_1B_1 + A_2B_2 + A_3B_3$ (b) $\vec{A}.\vec{B} = A_0B_0 A_1B_1 A_2B_2 A_3B_3$

 - (c) $\vec{A}.\vec{B} = -A_0B_0 A_1B_1 A_2B_2 A_3B_3$ (d) $\vec{A}.\vec{B} = -A_0B_0 + A_1B_1 A_2B_2 + A_3B_3$
- An inertial frame K' moves with a constant speed v with respect to another inertial frame KQ10. along their common x - direction. Let (x,ct) and (x',ct') denote the space-time coordinates in the frames K and K', respectively. Which of the following space-time diagrams correctly describes the t'- axis (x' = 0 line) and the x'- axis (t' = 0 line) in the x-ct plane? (In the following figures $\tan \phi = v/c$)







