CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

Class Test

(Relativistic Electrodynamics and Relativistic Quantum Mechanics)

Q1.	Which of the following questions is not Lorentz invariant?
QI.	William of the following questions is not conclude invariant.

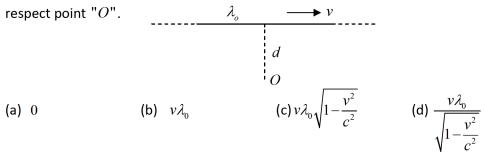
(a)
$$|\vec{E} \times \vec{B}|^2 \vec{E}$$
 is electric field vector and \vec{B} magnetic field vector

(b)
$$|\vec{E}|^2 - |\vec{B}|^2$$
 \vec{E} is electric field vector and \vec{B} magnetic field vector

(c)
$$\vec{E}.\vec{B}$$
 \vec{E} is electric field vector and \vec{B} magnetic field vector

(d)
$$\left| ec{J} \right|^2 - c^2 \left|
ho \right|^2$$
 where $ec{J}$ is current density and ho is charge density

- The value of the electric and magnetic fields in a particular reference frame (in Gaussian units) Q2. are $E = 3\hat{x} + 4\hat{y}$ and $B = 3\hat{z}$ respectively. An inertial observer moving with respect to this frame measures the magnitude of the electric field to be |E'|=5. The magnitude of the magnetic field |B'| measured by him is
 - (a) 5
- (b) 9
- (c) 0
- (d) 3
- In an inertial frame S, the magnetic vector potential in a region of space is given by $\vec{A} = az\hat{i}$ Q3. (where a is a constant) and the scalar potential is zero. The electric and magnetic fields seen by an inertial observer moving with a velocity $v\hat{i}$ with respect to S, are, respectively [In the following $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{2}}}$
- (a) 0 and $\gamma a\hat{j}$ (b) $-va\hat{k}$ and $\gamma a\hat{i}$ (c) $v\gamma a\hat{k}$ and $v\gamma a\hat{j}$ (d) $v\gamma a\hat{k}$ and $\gamma a\hat{j}$
- A rod has charge density $\lambda_{_{\! 0}}$ (seen by observer which is at rest with respect to the observer) and Q4. is moving with speed $\frac{c}{2}$ with respect to frame A. Frames A is moving with respect to frame B with speed $\frac{c}{A}$. The Frames A and B are moving in the same direction along the length of the rod. If observer is attached to frame B then the charge density measured by observer is
 - (a) λ_0
- (b) $\frac{3\lambda_0}{\sqrt{5}}$
- (d) $\frac{\sqrt{21\lambda_0}}{5}$ (c) $\frac{2\lambda_0}{\sqrt{3}}$


Website: www.pravegaaeducation.com | Email: pravegaaeducation@gmail.com

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

Infinite long wire of charge density λ_0 move with speed $v\left(\frac{v}{c}\neq 0\right)$ with respect to point Q5.

"O"which is distance d from wire as shown in figure. Find the electric current in wire with respect point "O".

- Which of the following is Lorentz invariant? Q6.
 - (a) $\frac{1}{c^2} \frac{\partial^2}{\partial t^2}$

- (b) Laplacian operator ∇^2
- (d) Operator $\Box^2 = \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \nabla^2$
- (d) operator $\Box^2 = \frac{1}{c^2} \frac{\partial^2}{\partial t^2} + \nabla^2$
- Q7. If ψ is wave function satisfy the klein Gordon equation then which of the following is correct expression of probability density.
 - (a) $\rho = \frac{i\hbar}{2m_{o}c^{2}} \left(\psi^{*} \frac{\partial \psi}{\partial x} \psi \frac{\partial \psi^{*}}{\partial x} \right)$ (b) $\rho = \frac{i\hbar}{2m_{o}c^{2}} \left(\psi^{*} \frac{\partial \psi}{\partial x} + \psi \frac{\partial \psi^{*}}{\partial x} \right)$

 - (c) $\rho = \frac{i\hbar}{2m_{e}c^{2}} \left(\psi^{*} \frac{\partial \psi}{\partial t} \psi \frac{\partial \psi^{*}}{\partial t} \right)$ (d) $\rho = \frac{i\hbar}{2m_{e}c^{2}} \left(\psi^{*} \frac{\partial \psi}{\partial t} + \psi \frac{\partial \psi^{*}}{\partial t} \right)$
- Dirac equation for free particle is given by $H = c\vec{\alpha}.\vec{p} + \beta mc^2$ if $\vec{\alpha} = \alpha_x \hat{i} + \alpha_y \hat{j} + \alpha_z \hat{k}$ then which Q8. of following is not correct
 - (a) $\alpha_x \alpha_v + \alpha_v \alpha_x = 0$

(b) $\alpha_{\rm r}\alpha_{\rm r} - \alpha_{\rm r}\alpha_{\rm r} = 0$

(c) $\alpha_{x}\beta + \beta\alpha_{x} = 0$

- (d) $|\alpha_{..}|^2 = 1$
- The classical Hamiltonian is given by $H = \left[\pi^2 c^2 + m^2 c^4\right]^{1/2}$ the $\psi(t) = |\psi\rangle \exp\left(-\frac{iEt}{\hbar}\right)$ is the Q9. solution of Dirac equation with $|\psi\rangle = \begin{vmatrix} \chi \\ \phi \end{vmatrix}$ is two component spinor then which of the following is correct
 - (a) $\left(E-mc^2\right)\chi-c\vec{\sigma}.\vec{\pi}\phi=0$ and $\left(E-mc^2\right)\phi-c\vec{\sigma}.\vec{\pi}\chi=0$
 - (b) $(E mc^2) \chi c\vec{\sigma} \cdot \vec{\pi} \phi = 0$ and $(E + mc^2) \phi c\vec{\sigma} \cdot \vec{\pi} \chi = 0$
 - (c) $(E + mc^2)\chi c\vec{\sigma}.\vec{\pi}\phi = 0$ and $(E + mc^2)\phi c\vec{\sigma}.\vec{\pi}\chi = 0$
 - (d) $(E + mc^2) \chi c\vec{\sigma}.\vec{\pi}\phi = 0$ and $(E mc^2)\phi c\vec{\sigma}.\vec{\pi}\chi = 0$

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

A charge q is interact with magnetic field \vec{B} with associate vector potential \vec{A} . Operator $\vec{\pi}$ is Q10.

defined as $\vec{\pi} = \vec{p} - \frac{q\vec{A}}{c}$, then value of $\vec{\pi} \times \vec{\pi}$ is

- (a) 0
- (b) $-\frac{i\hbar q}{c}\vec{B}$ (c) $\frac{i\hbar q}{2c}\vec{B}$ (d) $\frac{i\hbar q}{c}\vec{B}$