Chapter One FOURIER SERIES

1.1 Full Series

The function f(x) can be written in the form of infinite trigonometric series,

$$f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$
 $n = 1, 2,$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$
 $n = 1, 2,$

In another way for cosmetic reasons (see the symmetry $1/\pi$ in each of the coefficients) the FS can be written as.

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

Fourier coefficients are given by Euler formulas,

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \qquad n = 1, 2, \dots$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$
 $n = 1, 2,$

Example: Write the Fourier series for f(x).

$$f(x) = \begin{cases} -k & \text{if } -\pi < x < 0 \\ k & \text{if } 0 < x < \pi \end{cases} \quad and \quad f(x+2\pi) = f(x)$$

Given function f(x) (Periodic reactangular wave)

Physically: Functions of this kind occur as external forces acting on mechanical systems, electromotive forces in electric circuits, etc.

Note: Discontinuity:- The value of f(x) at a single point does not affect the integral; hence we can leave f(x) undefined at x=0 and $x=\pm\pi$.

Solution: $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$, $a_o = 0$. (See the symmetry in graph behaves like odd function)

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = 0 \qquad \qquad \therefore f(x) \cos nx = \text{Odd Function}$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx = \frac{2}{\pi} \int_{0}^{\pi} k \sin nx \, dx = \frac{2k}{n\pi} (1 - \cos n\pi). \quad \therefore f(x) \cos nx = \text{Even Function}$$

Hence the Fourier coefficients $\,b_{\scriptscriptstyle n}\,$ of our function are

$$b_1 = \frac{4k}{\pi}$$
, $b_2 = 0$, $b_3 = \frac{4k}{3\pi}$, $b_4 = 0$,

$$f(x) = \frac{4k}{\pi} \left(\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right).$$

Leibniz Series (1667): The famous Leibnitz series can be derived by setting $x = \pi / 2$ we have,

$$f\left(\frac{\pi}{2}\right) - k - \frac{4k}{\pi}\left(1 - \frac{1}{3} + \frac{1}{5} - + \dots\right).$$

Thus, $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + - \dots = \frac{\pi}{4}$.

H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Orthogonality of the Trigonometric System

The trigonometric system is orthogonal on the interval (hence $-\pi \le x \le \pi$ also on $0 \le x \le 2\pi$ or any other interval of length 2π because of periodicity); that is, the integral of the product of any two functions in over that interval is 0, so that for any integers n and m,

$$\int_{-\pi}^{\pi} \cos nx \cos mx dx = 0 \qquad (n \neq m)$$

$$\int_{-\pi}^{\pi} \sin nx \sin mx dx = 0 \qquad (n \neq m)$$

$$\int_{-\pi}^{\pi} \sin nx \cos mx dx = 0 \qquad (n \neq m)$$

Convergence and Sum of a Fourier Series

The class of functions that can be represented by Fourier series is surprisingly large and general. Sufficient conditions that are valid in most applications are as follows:

Representation by a Fourier Series

(a) Let f(x) be periodic with period 2π and piecewise continuous in the interval $-\pi \le x \le \pi$.

- (b) Let f(x) have a left-hand derivative and a right hand derivative at each point of that interval. Then the Fourier series of f(x) converges.
- (c) Its sum is f(x), except at points x_0 where it is discontinuous.

Note: At the point of discontinuity, the sum of the series is the average of the left- and right-hand limits of f(x) at x_0 .

Arbitrary Period.

Transition from period 2π to any period 2L, for the function f(x), simply by a transformation of scale on the x - axis.

From period 2π to any period p = 2L

Derivation: Periodic functions in applications may have any period not just 2π .

The transition from period 2π to be period p=2L is affected by a suitable change of scale. Let f(x) have period p=2L. Then we can introduce a new variable v such that, as a function of v, has period f(x). If we set

$$x = \frac{p}{2\pi}v$$
, so that $v = \frac{2\pi}{p}x = \frac{\pi}{L}x$

Then $v=\pm\pi$ corresponds to $x=\pm L$. This means that f , as a function of v , has period 2π and, therefore, a Fourier series of the form

$$f(x) = f\left(\frac{L}{\pi}v\right) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos nv + b_n \sin nv\right)$$

With coefficients,

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f\left(\frac{L}{\pi}v\right) dv, \qquad a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f\left(\frac{L}{\pi}v\right) \cos nv dv$$

 $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f\left(\frac{L}{\pi}v\right) \sin nv dv$

We could use these formulas directly, but the change to x simplifies calculations. Since

$$v = \frac{\pi}{L}x$$
, we have $dv = \frac{\pi}{L}dx$

And we integrate over x from -L to L . Consequently, we obtain for a function f(x) of period 2L the Fourier series

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right)$$

With the Fourier coefficients of f(x) given by the Euler formulas (π/L in dx cancels $1/\pi$)

$$a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx \quad n = 1, 2,$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx \quad n = 1, 2,$$

Example: Half-wave rectifier

A sinusoidal voltage $E \sin \omega t$, where t is time, is passed through a half-wave rectifier that clips the negative portion of the wave. Write its FS.

$$u(t) = \begin{cases} 0 & \text{if } -L < t < 0, \\ E \sin \omega t & \text{if } 0 < t < L \end{cases} \quad p = 2L = \frac{2\pi}{\omega}, \quad L = \frac{\pi}{\omega}.$$

Solution: Let the FS is given by, $f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$

$$a_0 = \frac{\omega}{2\pi} \int_0^{\pi/\omega} E \sin \omega t \, dt = \frac{E}{\pi} a_n = \frac{\omega}{\pi} \int_0^{\pi/\omega} E \sin \omega t \cos n \, \omega t \, dt = \frac{\omega E}{2\pi} \int_0^{\pi/\omega} \left[\sin \left(1 + n \right) \omega t + \sin \left(1 - n \right) \omega t \right] dt.$$

$$a_n = \frac{\omega E}{2\pi} \left[-\frac{\cos(1+n)\omega t}{(1+n)\omega} - \frac{\cos(1-n)\omega t}{(1-n)\omega} \right]_0^{\pi/\omega} = \frac{E}{2\pi} \left(\frac{-\cos(1+n)\omega t + 1}{(1+n)} + \frac{-\cos(1-n)\omega t + 1}{(1-n)} \right)$$

 $a_1 = 0$, If n is odd, this is equal to zero, and for even n we have

$$a_n = \frac{E}{2\pi} \left(\frac{2}{1+n} + \frac{2}{1-n} \right) = -\frac{2E}{(n-1)(n+1)\pi} \quad (n=2,4,...),$$

In a similar manner, $b_{\rm l}=E/2$ and $b_{\rm n}=$ 0 for n= 2,3, \cdots

$$u(t) = \frac{E}{\pi} + \frac{E}{2}\sin\omega t - \frac{2E}{\pi} \left(\frac{1}{1.3}\cos 2\omega t + \frac{1}{3.5}\cos 4\omega t + \dots\right).$$