CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

Chapter 3 (Relativistic Four Vectors)

PYQ [NET-JRF]

Consider a radioactive nucleus that is travelling at a speed $\frac{c}{2}$ with respect to the lab frame. It Q1. emits γ -rays of frequency v_0 in its rest frame. There is a stationary detector, (which is not on the path of the nucleus) in the lab. If a γ -ray photon is emitted when the nucleus is closest to the detector, its observed frequency at the detector is

(a)
$$\frac{\sqrt{3}}{2}v_0$$

(b)
$$\frac{1}{\sqrt{3}}v_0$$

(b)
$$\frac{1}{\sqrt{3}}v_0$$
 (c) $\frac{1}{\sqrt{2}}v_0$ (d) $\sqrt{\frac{2}{3}}v_0$

(d)
$$\sqrt{\frac{2}{3}}v_0$$

NET/JRF (JUNE-2016)

Q2. An inertial frame K' moves with a constant speed v with respect to another inertial frame Kalong their common x - direction. Let (x,ct) and (x',ct') denote the space-time coordinates in the frames K and K', respectively. Which of the following space-time diagrams correctly describes the t'- axis (x' = 0 line) and the x'- axis (t' = 0 line) in the x-ct plane? (In the following figures $\tan \phi = v/c$)

NET/JRF (JUNE-2018)