CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

Chapter 4 Semi Classical Theory and Introduction to Quantum Mechanics PYQ [IIT-JAM]

Q1.	If $M_{_{\it e}}, M_{_{\it p}}$ and $M_{_{\it H}}$ are the rest masses of electron, proton and hydrogen atom in the ground
	state (with energy $-13.6\ eV$), respectively, which of the following is exactly true? (c is the
	speed of light in free space)

(a)
$$M_H = M_p + M_e$$

(b)
$$M_H = M_p + M_e - \frac{13.6 \, eV}{c^2}$$

(c)
$$M_H = M_p + M_e + \frac{13.6 \, eV}{c^2}$$

(d)
$$M_H = M_{_P} + M_{_e} + K$$
 , where $K \neq \pm \frac{13.6~eV}{c^2}$ or zero

IIT-JAM 2005

Q2. In the hydrogen atom spectrum, the ratio of the longest wavelength in the Lyman series (final state n = 1) to that in the Balmer series (final State n = 2) is ______

IIT-IΔM 2015

- Q3. Consider Rydberg (hydrogen-like) atoms in a highly excited state with n around 300. The wavelength of radiation coming out of these atoms for transitions to the adjacent states lies in the range:
 - (a) Gamma rays $(\lambda \sim pm)$
- (b) $UV(\lambda \sim nm)$

(c) Infrared $(\lambda \sim \mu m)$

(d) $RF(\lambda \sim m)$

IIT-JAM 2017

- Q4. Let T_g and T_e be the kinetic energies of the electron in the ground and the third excited states of a hydrogen atom, respectively. According to the Bohr model, the ratio $\frac{T_g}{T}$ is
 - (a) 3
- (b) 4
- (c) 9
- (d) 16

IIT-JAM 2018