CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

Chapter 2 (Mass Energy Equivalence)

PYQ [IIT-JAM]

Q1.	The amount of wor	k done to increases	s the speed	of an	electron	nom $c/3$ to	2c/3 is
	($c = 3 \times 10^8 \text{m/s}$ and rest mass of electron is 0511MeV)						
	(a) 56.50 keV	(b) 143.58 keV	(c) 168.20 ke	V	(d) 511	.00 keV	
						IIT-JAM 2019	
Q2.	Two relativistic particles with opposite velocities collide head-on and come to rest by sticking						
	with each other. Which of the following quantities is/are conserved in the collision?						
	(a) Total momentum		(b) Total energy				
	(c) Total kinetic energ	У	(d) Total rest	mass			
						IIT-JAM 2020	
Q3.	A particle is moving with a velocity $0.8\hat{cj}$ (c is the speed of light) in an inertial frame S_1 . Frame						
	S_2 is moving with a velocity $0.8c\hat{i}$ with respect to S_1 . Let E_1 and E_2 be the respective energies						
	of the particle in the t	is (Round off to two decimal places).					
						IIT-JAM 2021	

 $Website: \underline{www.pravegaaeducation.com} \ | \ Email: \underline{pravegaaeducation@gmail.com}$

PYQ [GATE]

- Q1. Two particles each of rest mass m collide head-on and stick together. Before collision, the speed of each mass was 0.6 times the speed of light in free space. The mass of the final entity is
 - (a) 5m/4
- (b) 2m
- (c) 5m/2
- (d) 25m/8

GATE-2011

- Q2. A particle with rest mass M is at rest and decays into two particles of equal rest masses $\frac{3}{10}M$ which move along the z axis. Their velocities are given by
 - (a) $\vec{v}_1 = \vec{v}_2 = (0.8c)\hat{z}$

(b) $\vec{v}_1 = -\vec{v}_2 = (0.8c)\hat{z}$

(c) $\vec{v}_1 = -\vec{v}_2 = (0.6c)\hat{z}$

(d) $\vec{v}_1 = (0.6c)\hat{z}$; $\vec{v}_2 = (-0.8c)\hat{z}$

GATE-2015

Q3. The kinetic energy of a particle of rest mass m_0 is equal to its rest mass energy. Its momentum in units of m_0c , where c is the speed of light in vacuum, is ______. (Give your answer upto two decimal places)

GATE-2016

Q4. A particle of rest mass M is moving along the positive x-direction. It decays into two photons γ_1 and γ_2 as shown in the figure. The energy of γ_1 is 1~GeV and the energy of γ_2 is 0.82~GeV.

The value of M (in units of $\frac{GeV}{c^2}$) is ______. (Give your answer upto two decimal places)

GATE-2016

- Q5. The relativistic form of Newton's second law of motion is
 - (a) $F = \frac{mc}{\sqrt{c^2 v^2}} \frac{dv}{dt}$

(b)
$$F = \frac{m\sqrt{c^2 - v^2}}{c} \frac{dv}{dt}$$

(c) $F = \frac{mc^2}{c^2 - v^2} \frac{dv}{dt}$

(d) $F = m \frac{c^2 v^2}{c^2} \frac{dv}{dt}$

GATE-2013

PYQ [NET-JRF]

Q1. According to the special theory of relativity, the speed v of a free particle of mass m and total energy E is:

(a)
$$v = c\sqrt{1 - \frac{mc^2}{E}}$$

(b)
$$v = \sqrt{\frac{2E}{m}} \left(1 + \frac{mc^2}{E} \right)$$

(c)
$$v = c\sqrt{1 - \left(\frac{mc^2}{E}\right)^2}$$

(d)
$$v = c \left(1 + \frac{mc^2}{E}\right)$$

NET/JRF (DEC-2014)

Q2. Let v, p and E denote the speed, the magnitude of the momentum, and the energy of a free particle of rest mass m. Then

(a)
$$\frac{dE}{dP} = c$$
 constant (b) $p = mv$

(a)
$$\frac{dE}{dP} = c$$
 constant (b) $p = mv$ (c) $v = \frac{cp}{\sqrt{p^2 + m^2c^2}}$ (d) $E = mc^2$

NET/JRF (DEC-2012)

Q3. Consider a particle of mass m moving with a speed v . If $T_{\scriptscriptstyle R}$ denotes the relativistic kinetic energy and T_N its non-relativistic approximation, then the value of $\frac{\left(T_R-T_N\right)}{T}$ for v=0.01~c , is

- (a) 1.25×10^{-5}
- (b) 5.0×10^{-5}
- (c) 7.5×10^{-5}
- (d) 1.0×10^{-4}

NET/JRF (DEC-2015)

Q4. Consider the decay process $\, au^- o \pi^- + \nu_{_{ au}}\,$ in the rest frame of the $\, au^-$. The masses of the $\, au^-, \pi^$ and ν_{τ} are M_{τ}, M_{π} and zero respectively.

The energy of π^- is

(a)
$$\frac{\left(M_{\tau}^2 - M_{\pi}^2\right)c^2}{2M_{\tau}}$$
 (b) $\frac{\left(M_{\tau}^2 + M_{\pi}^2\right)c^2}{2M_{\tau}}$ (c) $\left(M_{\tau} - M_{\pi}\right)c^2$ (d) $\sqrt{M_{\tau}M_{\pi}}c^2$

(b)
$$\frac{\left(M_{\tau}^{2}+M_{\pi}^{2}\right)c^{2}}{2M_{\tau}}$$

(c)
$$(M_{\tau} - M_{\pi})c^{2}$$

(d)
$$\sqrt{M_{\tau}M_{\pi}}c^{2}$$

NET/JRF (JUNE-2011)

Q5. The recently-discovered Higgs boson at the LHC experiment has a decay mode into a photon and a Z boson. If the rest masses of the Higgs and Z boson are $125~{\rm GeV/c^2}$ and $90~{\rm GeV/c^2}$ respectively, and the decaying Higgs particle is at rest, the energy of the photon will approximately be

- (a) $35\sqrt{3}$ GeV
- (b) 35 *GeV*
- (c) 30 *GeV*
- (d) 15 *GeV*

NET/JRF (JUNE-2014)

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

The muon has mass $105\,MeV/c^2$ and mean life time $2.2\,\mu s$ in its rest frame. The mean Q6. distance traversed by a muon of energy $315\,MeV$ before decaying is approximately,

- (a) $3 \times 10^5 \, km$
- (b) 2.2 *cm*
- (c) $6.6 \mu m$
- (d) 1.98 km

NET/JRF (DEC-2012)

The energy of a free relativistic particle is $E=\sqrt{\left|\vec{p}\right|^2c^2+m^2c^4}$, where m is its rest mass, \vec{p} is Q7. its momentum and c is the speed of light in vacuum. The ratio $v_{\scriptscriptstyle g}$ / $v_{\scriptscriptstyle p}$ of the group velocity $v_{\scriptscriptstyle g}$ of a quantum mechanical wave packet (describing this particle) to the phase velocity $\boldsymbol{v}_{\scriptscriptstyle p}$ is

- (a) $|\vec{p}|c/E$
- (b) $|\vec{p}| mc^3 / E^2$ (c) $|\vec{p}|^2 c^3 / E^2$ (d) $|\vec{p}| c / 2E$

NET/JRF (JUNE-2018)

A constant force F is applied to a relativistic particle of rest mass m. If the particle starts from Q8. rest at t = 0, its speed after a time t is

- (a) Ft/m

- (b) $c \tanh\left(\frac{Ft}{mc}\right)$ (c) $c\left(1-e^{-Ft/mc}\right)$ (d) $\frac{Fct}{\sqrt{F^2t^2+m^2c^2}}$

NET/JRF (DEC-2011)

A relativistic particle of mass m and charge e is moving in a uniform electric field of strength ε . Q9. Starting from rest at t=0, how much time will it take to reach the speed $\frac{c}{2}$?

- (a) $\frac{1}{\sqrt{3}} \frac{mc}{e\varepsilon}$ (b) $\frac{mc}{e\varepsilon}$
- (c) $\sqrt{2} \frac{mc}{es}$ (d) $\sqrt{\frac{3}{2}} \frac{mc}{es}$

Q10. For a particle of energy E and momentum p (in a frame F), the rapidity y is defined as $y = \frac{1}{2} \ln \left(\frac{E + p_3 c}{E - p_3 c} \right)$. In a frame F' moving with velocity $v = (0, 0, \beta c)$ with respect to F, the rapidity y' will be

(a) $y' = y + \frac{1}{2} \ln(1 - \beta^2)$

(b) $y' = y - \frac{1}{2} \ln \left(\frac{1 + \beta}{1 - \beta} \right)$

(c) $y' = y + \ln\left(\frac{1+\beta}{1-\beta}\right)$

(d) $y' = y + 2 \ln \left(\frac{1+\beta}{1-\beta} \right)$

NET/JRF (June-2016)

A heavy particle of rest mass M while moving along the positive z - direction, decays into two Q11. identical light particles with rest mass m (where M>2m). The maximum value of the momentum that any one of the lighter particles can have in a direction perpendicular to the z direction, is

- (a) $\frac{1}{2}C\sqrt{M^2-4m^2}$ (b) $\frac{1}{2}C\sqrt{M^2-2m^2}$ (c) $C\sqrt{M^2-4m^2}$ (d) $\frac{1}{2}MC$

NET/JRF (JUNE-2020)

PYQ [JEST]

Q1. In an observer's rest frame, a particle is moving towards the observer with an energy E and momentum P. If c denotes the velocity of light in vacuum, the energy of the particle in another frame moving in the same direction as particle with a constant velocity v is

(a)
$$\frac{\left(E+vP\right)}{\sqrt{1-\left(v/c\right)^2}}$$

(b)
$$\frac{(E-vP)}{\sqrt{1-(v/c)^2}}$$

(c)
$$\frac{\left(E+vP\right)}{\left[1-\left(v/c\right)^{2}\right]^{2}}$$

(a)
$$\frac{\left(E+vP\right)}{\sqrt{1-\left(v/c\right)^2}}$$
 (b) $\frac{\left(E-vP\right)}{\sqrt{1-\left(v/c\right)^2}}$ (c) $\frac{\left(E+vP\right)}{\left[1-\left(v/c\right)^2\right]^2}$ (d) $\frac{\left(E-vP\right)}{\left[1-\left(v/c\right)^2\right]^2}$

JEST-2013

- Q2. A K meson (with a rest mass of 494 MeV) at rest decays into a muon (with a rest mass of 106 MeV) and a neutrino. The energy of the neutrino, which can be massless, is approximately
 - (a) 120 *MeV*
- (b) 236 *MeV*
- (c) 300 MeV
- (d) 388 *MeV*

JEST-2013

- Q3. The velocity of a particle at which the kinetic energy is equal to its rest energy is (in terms of c, the speed of light in vacuum)
 - (a) $\sqrt{3}c/2$
- (b) 3c/4
- (c) $\sqrt{3/5}c$ (d) $c/\sqrt{2}$

JEST-2013