CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

Chapter 2 (Mass Energy Equivalence) Worksheet

Q1.	According to the special theory of relativity, the speed v of a free particle of mass m and total
	energy E is:

(a)
$$v = c\sqrt{1 - \frac{mc^2}{E}}$$

(b)
$$v = \sqrt{\frac{2E}{m}} \left(1 + \frac{mc^2}{E} \right)$$

(c)
$$v = c\sqrt{1 - \left(\frac{mc^2}{E}\right)^2}$$

(d)
$$v = c \left(1 + \frac{mc^2}{E} \right)$$

Q2. The velocity of a particle at which the kinetic energy is equal to its rest energy is (in terms of c, the speed of light in vacuum)

(a)
$$\sqrt{3}c/2$$

(b)
$$3c/4$$

(c)
$$\sqrt{3/5}c$$
 (d) $c/\sqrt{2}$

(d)
$$c/\sqrt{2}$$

Q3. The energy of the particle P in the rest frame of the particle Q is

(a)
$$\frac{1}{2}m_0c^2$$

(b)
$$\frac{5}{4}m_0c^2$$

(a)
$$\frac{1}{2}m_0c^2$$
 (b) $\frac{5}{4}m_0c^2$ (c) $\frac{19}{13}m_0c^2$ (d) $\frac{11}{9}m_0c^2$

(d)
$$\frac{11}{9} m_0 c^2$$

The momentum of an electron (mass m) which has the same kinetic energy as its rest mass Q4. energy is (c is velocity of light)

(a)
$$\sqrt{3}mc$$

(b)
$$\sqrt{2}mc$$

(d)
$$mc/\sqrt{2}$$

A particle of rest mass m_0 is moving with speed $\frac{4}{5}c$. Then the kinetic energy of the particle is Q5. given by

(a)
$$\frac{5}{3}m_0c^2$$

(a)
$$\frac{5}{3}m_0c^2$$
 (b) $\frac{2}{3}m_0c^2$ (c) $\frac{3}{5}m_0c^2$ (d) $\frac{8}{3}m_0c^2$

(c)
$$\frac{3}{5}m_0c^2$$

(d)
$$\frac{8}{3}m_0c^2$$

If E is relativistic energy and P is relativistic momentum then the value of $\frac{dE}{dn}$ is equivalent to Q6.

(a)
$$\frac{dE}{dP} = \frac{pc^2}{E}$$

(a)
$$\frac{dE}{dP} = \frac{pc^2}{E}$$
 (b) $\frac{dE}{dP} = \frac{2pc^2}{E}$ (c) $\frac{dE}{dP} = \frac{pc^2}{2E}$

(c)
$$\frac{dE}{dP} = \frac{pc^2}{2E}$$

Q7. The kinetic energy of a particle of rest mass m_0 is equal to its rest mass energy. Its momentum in units of m_0c , where c is the speed of light in vacuum, is given by.

(a)
$$2m_0c$$

(b)
$$\sqrt{2}m_0c$$
 (c) $3m_0c$

(c)
$$3m_0 a$$

(d)
$$\sqrt{3}m_0c$$

Q8. A Particle has rest mass m_0 , relativistic energy E and kinetic energy T. If P is relativistic momentum then the value of $\frac{dE}{dn}$ is equivalent to

(a)
$$\frac{dE}{dP} = \frac{pc^2}{T + m_0 c^2}$$

(b)
$$\frac{dE}{dP} = \frac{2pc^2}{E - m_0 c^2}$$

(c)
$$\frac{dE}{dP} = \frac{pc^2}{2(T + m_0c^2)}$$

(d)
$$\frac{dE}{dP} = \frac{pc^2}{2(E - m_0 c^2)}$$

Q9. The relativistic form of Newton's second law of motion is

(a)
$$F = \frac{mc}{\sqrt{c^2 - v^2}} \frac{dv}{dt}$$

(b)
$$F = \frac{m\sqrt{c^2 - v^2}}{c} \frac{dv}{dt}$$

(c)
$$F = \frac{mc^3}{\left(c^2 - v^2\right)^{3/2}} \frac{dv}{dt}$$

(d)
$$F = m \frac{c^2 - v^2}{c^2} \frac{dv}{dt}$$

Q10. Consider a beam of relativistic particles of kinetic energy K at normal incidence upon a perfectly absorbing surface. The particle flux (number of particles per unit area per unit time) is J and each particle has rest mass m_0 . The pressure on the surface is

(a)
$$\frac{JK}{c}$$

(b)
$$\frac{J\sqrt{K(K+m_0c^2)}}{c}$$

(c)
$$\frac{J(K+m_0c^2)}{c}$$

(d)
$$\frac{J\sqrt{K(K+2m_0c^2)}}{c}$$

- The muon has rest mass $105 MeV/c^2$ and mean life time $2\mu s$ in its rest frame. The mean time Q11. traversed by a muon of energy 210MeV before decaying is approximately:
 - (a) $2\mu s$
- (b) $3 \mu s$
- (c) $4\mu s$
- (d) $6\mu s$
- Q12. The kinetic energy of a particle of rest mass m_0 is equal to twice to its rest mass energy. Its momentum in units of m_0c , where c is the speed of light in vacuum, is given by
 - (a) $2m_0c$
- (b) $\sqrt{2}m_{o}c$
- (c) $p = 2\sqrt{2}m_0c$ (d) $\sqrt{3}m_0c$
- A K meson (with a rest mass of $494\,MeV$) at rest decays into a muon (with a rest mass of Q13. $106\,MeV$) and a neutrino. The energy of the neutrino, which is massless, is approximately
 - (a) 120 *MeV*
- (b) 236 *MeV*
- (c) 300 MeV
- (d) 388 *MeV*

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

- Q14. The π^+ decays at rest to μ^+ and v_μ . Assuming the neutrino to be massless, the momentum of the neutrino is $\left(\text{in } MeV/c\right)$. ($m_\pi=139\,MeV/c^2, m_\mu=105\,MeV/c^2$)
 - (a) 25
- (b) 30
- (c) 35
- (d) 40
- Q15. Two particles each of rest mass m collide head-on and stick together. Before collision, the speed of each mass was 0.6 times the speed of light in free space. The mass of the final entity is
 - (a) 5m/4
- (b) 2 m
- (c) 5m/2
- (d) 25m/8
- Q16. A particle of mass M decays at rest into a massless particle and another particle of mass m. The magnitude of the momentum of each of these relativistic particles is:
 - (a) $\frac{c}{2}\sqrt{M^2-4m^2}$

(b) $\frac{c}{2}\sqrt{M^2+4m^2}$

(c) $\frac{c}{2M} \left(M^2 - m^2 \right)$

- (d) $\frac{c}{2M} \left(M^2 + m^2 \right)$
- Q17. A body of rest mass m_0 moving at speed v collide and stick to an identical body at rest. The

rest mass of mass M of the final clump is (take $\,\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}\,)$

(a) $M = m_0 \sqrt{2 + \gamma}$

(b) $M = m_0 \sqrt{2 - \gamma}$

(c) $M = m_0 \sqrt{2(1+\gamma)}$

- (d) $M = m_0 \sqrt{2(1-\gamma)}$
- Q18. A particle with rest mass M is at rest and decays into two particles of equal rest masses $\frac{2}{5}M$ which move along the z axis. Their velocities are given by
 - (a) $\vec{v}_1 = \vec{v}_2 = (0.8c)\hat{z}$

(b) $\vec{v}_1 = -\vec{v}_2 = (0.8c)\hat{z}$

- (c) $\vec{v}_1 = -\vec{v}_2 = (0.6c)\hat{z}$
- (d) $\vec{v}_1 = (0.6c)\hat{z}, \vec{v}_2 = (-0.8c)\hat{z}$
- Q19. A neutral pion of (rest) mass m_0 and energy $E = \frac{5}{4}m_0c^2$ decays into two photon, one of the photon emitted in the same direction as the original pion and other in opposite direction. Energy of the each photon is given by
 - (a) $E_1 = m_0 c^2$, $E_2 = \frac{m_0 c^2}{4}$

- (b) $E_1 = \frac{5m_0c^2}{8}, E_2 = \frac{5m_0c^2}{8}$
- (c) $E_1 = \frac{3m_0c^2}{4}, E_2 = \frac{m_0c^2}{2}$
- (d) $E_1 = \frac{11}{12} m_0 c^2, E_2 = \frac{m_0 c^2}{3}$

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

- Q20. A particle of rest mass m_0 whose total energy is twice the rest mass energy collide with identical particle at rest. If the stick together and make a composite mass. Then which one are correct statements?
 - 1. the momentum of composite mass is $\sqrt{3} m_0 c$
 - 2. the total energy is given by is $3m_0c^2$
 - 3. the rest mass of composite mass is $\sqrt{6} m_0$
 - (a) 1 and 2 are correct

(b) 2 and 3 are correct

(c) 1 and 3 are correct

- (d) 1, 2 and 3 are correct
- Q21. K meson of rest energy $494\,MeV$ decays into a μ meson of rest energy $106\,MeV$ and a neutrino of zero rest energy. Then which of the following statement is correct
 - (a) The kinetic energy of the neutrino is $235.6\,MeV$, and that of the muon is $152.4\,MeV$.
 - (b) The kinetic energy of the neutrino is $152.4 \, MeV$, and that of the muon is $235.6 \, MeV$
 - (c) The kinetic energy of the neutrino and that of the muon is 235.6 MeV
 - (d) The kinetic energy of the neutrino and that of the muon is $152.4\,MeV$
- Q22. An electron of mass $m = 0.511 MeV/c^2$ and a photon of mass m = 0 both have momenta of 2.000 MeV/c. The corresponding energy for electron and photon are respectively:
 - (a) $2.064 \, MeV$ and $2.000 \, MeV$
- (b) $2.000 \, MeV$ and $2.064 \, MeV$
- (c) $20.64 \, MeV$ and $2.000 \, MeV$
- (d) $20.00 \, MeV$ and $2.064 \, MeV$