Previous Year's Solution GATE 2020 Section - GA (General Aptitude) | Q1 – (| Q5 carry one mark eac | h. | | | |----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------|----------------------|---------------------------------| | Q1. | He is known for his unscrupulous ways. He always sheds tears to deceive peo | | | | | | (a) fox's | | (b) crocodile's | | | | (c) crocodile | | (d) fox | | | Ans. : | (c) | | | | | Solution: 'To shed crocodile tear's means 'to pretend to be sad or to sympathize with someone withou | | | | | | | really caring about them. | | | | | Q2. | Jofra Archer, the England fast bowler, is than accurate. | | | | | | (a) more fast | (b) faster | (c) less fast | (d) more faster | | Ans. : | (b) | | | | | Soluti | lution: The use 'less fast' and 'more fast' is incorrect because of using adjective. Similarly more fast | | | | | | is incorrect because faster itself is in comparative degree. The only choice that remains is | | | | | | 'faster'. Hence correct option is (b). | | | | | Q3. | Select the word that fits the analogy: | | | | | | Build : Building :: Grow : | | | | | | (a) Grown | (b) Grew | (c) Growth | (d) Growed | | Ans. : | (c) | | | | | Solution: The verb 'build' finally results in 'building' similarly verb 'grow' finally result in noun 'growth' | | | | | | Q4. | I do not think you know the case well enough to have opinions. Having said that, I agree with | | | | | | your other point. | | | | | | What does the phrase "having said that" mean in the given text? | | | | | | (a) as opposed to what I have said | | | | | | (b) despite what I ha | ve said | | | | | (c) in addition to what I have said | | | | | | (d) contrary to what I have said | | | | | Ans. : | (b) | | | | | Soluti | on: 'Having said that' | means 'despite wha | t has been mentioned | d earlier' or 'despite what has | | | been said earlier'. Option (1) and (2) convey the same meaning and they do not fit in the | | | | | | context here. | | | | Q5. Define [x] as the greatest integer less than or equal to x, for each $x \in (-\infty, \infty)$. If y = [x], then area under y for $x \in [1,4]$ is (a) 1 (b) 3 (c) 4 (d) 6 Ans.: (d) Solution: The groups of y = [x] in the interval [1,4] is shown in the figure. The required area is the sum of areas of all the rectangles. Required area =1+2+3=6 Q6 - Q10 carry two marks each. Q6. Crowd funding deals with mobilisation of funds for a project from a large number of people, who would be willing to invest smaller amounts through web-based platforms in the project. Based on the above paragraph, which of the following is correct about crowd funding? (a) Funds raised through unwilling contributions on web-based platforms (b) Funds raised through large contributions on web-based platforms (c) Funds raised through coerced contributions on web-based platforms (d) Funds raised through voluntary contributions on web-based platforms Ans. : (d) Solution: The paragraph states that people are willing to invest through well-based platforms hence correct option is (d) Q7. P,Q,R and S are to be uniquely coded using r and s . If P is coded as rr and Q as rs , then R and S , respectively, can be coded as (a) Sr and rs (b) ss and rr (c) \mbox{rs} and \mbox{ss} (d) sr and ss Ans.: (d) Solution: The code for P is $\ r \$ and the code for Q is $\ r \$. Now there are only two codes left $\ s \ r \$ and $\ s \$ and $\ s \$ (not necessarily in that order). Q8. The sum of the first n terms in the sequence 8,88,888,888,... is (a) $$\frac{81}{80}(10^n - 1) + \frac{9}{8}n$$ (b) $$\frac{81}{80}(10^n - 1) - \frac{9}{8}n$$ (c) $$\frac{80}{81} (10^n - 1) + \frac{8}{9}n$$ (d) $$\frac{80}{81} (10^n - 1) - \frac{8}{9}n$$ Ans. : (d) Solution: We have to find the sum of n term of $$8+88,888,8888,...$$ Let $$S = 8 + 88,888,8888 + \cdots$$ upto *n* term $$\Rightarrow$$ S = 8(1+11+111+1111+...upto *n* terms) $$\Rightarrow S = \frac{8}{9} (9 + 99 + 999 + 9999 + \dots \text{ upto } n \text{ terms})$$ $$\Rightarrow S = \frac{8}{9} \left[(10 - 1) + (100 - 1) + (1000 - 1) + \cdots \text{ upto } n \text{ terms} \right]$$ $$\Rightarrow S = \frac{8}{9} \left[\left(10 + 100 + 1000 + \dots \text{ upto } n \text{ terms} \right) - n \right]$$ Now, $$10+100+1000+\cdots$$ upto $n \text{ term} = \frac{10(1-10^n)}{1-10} = \frac{10}{9}(10^n-1)$ Therefore: $$S = \frac{8}{9} \left[\frac{10(10^n - 1)}{9} - n \right] = \frac{80}{81} (10^n - 1) - \frac{8n}{9}$$ Q9. Select the graph that schematically represents BOTH $y=x^m$ and $y=x^{1/m}$ properly in the interval $0 \le x \le 1$, for integer values of m, where m > 1 Ans.: (a) Solution: Since the schematic shape of the graph is independent of the value of m hence we can take any value of m to find our answer. If we take m=2 , then $y=x^2$ and $y=x^{1/2}=\sqrt{x}$ are the two curves. We know that $x^2 = \sqrt{x}$ at x = 0 and x = 1. Also $x^2 < \sqrt{x}$ for all x in the interval (0,1). Q10. The bar graph shows the data of the students who appeared and passed in an examination for four schools P,Q,R and S. The average of success rates (in percentage) of these four school (a) 58.5% (b) 58.8% (c) 59.0% (d) 59.3% Ans.: (c) Solution: Success rate of school $$P = \frac{280}{500} \times 100 = 56\%$$ Success rate of school $$Q = \frac{330}{600} \times 100 = 55\%$$ Success rate of school $$R = \frac{455}{700} \times 100 = 65\%$$ Success rate of school $$S = \frac{240}{400} \times 100 = 60\%$$ Average of success rate $$=\frac{56+55+65+60}{4} = 59\%$$ ## **SECTION - PHYSICS** Q1 - Q25 carry one mark each. Which one of the following is a solution of $\frac{d^2u(x)}{dx^2} = k^2u(x)$, for k real? Q1. - (a) e^{-kx} - (b) $\sin kx$ - (c) $\cos kx$ - (d) $\sinh x$ **Topic: Mathematical Physics** **Sub Topic: Differential Equation** Ans.: (a) Solution: $m^2 - k^2 = 0 \implies m = \pm k \implies u = c_1 e^{kx} + c_2 e^{-kx}$ A real, invertible 3×3 matrix M has eigenvalues $\}_i, (i=1,2,3)$ and the corresponding Q2. eigenvectors are $|e_i\rangle$, (i=1,2,3) respectively. Which one of the following is correct? (a) $$M|e_i\rangle = \frac{1}{}_i|e_i\rangle$$, for $i=1,2,3$ (b) $$M^{-1} |e_i\rangle = \frac{1}{|e_i\rangle} |e_i\rangle$$, for $i = 1, 2, 3$ (c) $$M^{-1}|e_i\rangle = \}_i|e_i\rangle$$, for $i = 1, 2, 3$ (d) The eigenvalues of M and M^{-1} are not related **Topic: Mathematical Physics** **Sub Topic: Matrix** Ans.: (b) Q3. A quantum particle is subjected to the potential $$V(x) = \begin{cases} \infty, & x \le -\frac{a}{2} \\ 0, & -\frac{a}{2} < x < \frac{a}{2} \\ \infty, & x \ge \frac{a}{2} \end{cases}$$ The ground state wave function of the particle is proportional to - (a) $\sin\left(\frac{fx}{2a}\right)$ (b) $\sin\left(\frac{fx}{a}\right)$ (c) $\cos\left(\frac{fx}{2a}\right)$ **Topic: Quantum Mechanics** **Sub Topic: Particle in box** Ans.: (d) Solution: Ground state has even parity so $$\left|\mathbb{E}_{1}\right\rangle = \sqrt{\frac{2}{a}}\cos\frac{f x}{a}$$ Option (d) is correct. Q4. Let \hat{a} and \hat{a}^{\dagger} , respectively denote the lowering and raising operators of a one-dimensional simple harmonic oscillator. Let $|n\rangle$ be the energy eigenstate of the simple harmonic oscillator. Given that $|n\rangle$ is also an eigen state of $\hat{a}^{\dagger}\hat{a}^{\dagger}\hat{a}\hat{a}$, the corresponding eigenvalue is (a) $$n(n-1)$$ (b) $$n(n+1)$$ (c) $$(n+1)^2$$ (d) n^{2} **Topic: Quantum Mechanics** **Sub Topic: Harmonic Oscillator** Ans.: (a) $\text{Solution: } \hat{a}^{\dagger}\hat{a}^{\dagger}\hat{a}\hat{a}\left|n\right\rangle \ = \hat{a}^{\dagger}\hat{a}^{\dagger}\hat{a}\sqrt{n}\left|n-1\right\rangle = \hat{a}^{\dagger}\hat{a}^{\dagger}\sqrt{n}\sqrt{n-1}\left|n-2\right\rangle$ $$=\hat{a}^{\dagger}\sqrt{n}\sqrt{n-1}\sqrt{n-1}\left|n-1\right\rangle = \sqrt{n}\sqrt{n-1}\sqrt{n-1}\sqrt{n}\left|n\right\rangle = n\left(n-1\right)\left|n\right\rangle$$ Q5. Which one of the following is a universal logic gate? (a) AND (b) NOT (c) OR (d) NAND **Topic: Electronics** **Sub Topic: Digital Electronics** Ans. : A universal gate is a gate which can implement any Boolean function without need to use any other gate type. **The NAND and NOR gates** are universal gates. So option (d) is correct. Q6. Which one of the following is the correct binary equivalent of the hexadecimal F6C? (a) 0110 1111 1100 (b) 1111 0110 1100 (c) 1100 0110 1111 (d) 0110 1100 0111 **Topic: Electronics** **Sub Topic: Digital Electronics** Ans.: (b) Solution: Hexadecimal Number System is one the type of Number Representation techniques, in which there value of base is 16. That means there are only 16 symbols or possible digit values, there are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Where A, B, C, D, E and F are single bit representations of decimal value 10, 11, 12, 13, 14 and 15 respectively. $Website: \underline{www.pravegaaeducation.com} \ | \ Email: \underline{pravegaaeducation@gmail.com}$ $$F \rightarrow (15)_{10} \rightarrow (1111)_2$$, $6 \rightarrow (6)_{10} \rightarrow (0110)_2$ and $C \rightarrow (12)_{10} \rightarrow (1100)_2$ Thus $F6C \rightarrow (1111\ 0110\ 1100)_3$ - Q7. The total angular momentum j of the ground state of the ${}^{17}_8O$ nucleus is - (a) $\frac{1}{2}$ - (b) 1 - (c) $\frac{3}{2}$ - (d) $\frac{5}{2}$ **Topic: Nuclear Physics** **Sub Topic: Shell Model** Ans.: (d) Solution: For ${}^{17}_{8}O$: number of proton is Z=8 and number of neutron is N=9 For N=9: the configuration is given as $(1s_{1/2})^2(1p_{3/2})^4(1p_{1/2})^2(1d_{5/2})^1$ The angular momentum is $j = \frac{5}{2}$ - Q8. A particle X is produced in the process $f^+ + p \to K^+ + X$ via the strong interaction. If the quark content of the K^+ is $u\overline{s}$, the quark content of X is - (a) $c\overline{s}$ - (b) uud - (c) uus - (d) $u\overline{d}$ **Topic: Particle Physics** **Sub Topic: Quark content** Ans.: (c) Solution: Lets first identify the particle $\, X \,$ $$f^+ + p \rightarrow K^+ + X$$ $$q: +1 +1 +1 +1$$ spin: $$0 \ 1/2 \ 0 \ 1/2$$ $$B: 0 +1 0 +1$$ $$I_3: +1 + \frac{1}{2} + \frac{1}{2} + 1$$ $$S: 0 0 +1 -1$$ Thus the particle X is strange particle with isospin $\frac{1}{2}$ identified as Σ^+ . The quark content of $\Sigma^{\scriptscriptstyle +}$ is ${\it uus}$. Q9. A medium $(v_r > 1, v_r = 1, t_r > 0)$ is semi-transparent to an electromagnetic wave when - (a) Conduction current >> Displacement current - (b) Conduction current << Displacement current - (c) Conduction current = Displacement current - (d) Both Conduction current and Displacement current are zero **Topic: Electromagnetic Theory** **Sub Topic: EM Waves** Ans.: (b) Solution: Conduction current $J_c = \dagger E = \dagger E_0 \cos \check{S}t$ $\mbox{Displacement current } \boldsymbol{J}_{\boldsymbol{d}} = \mbox{V} \, \frac{\partial E}{\partial t} = \mbox{Š} \mbox{V} \, \boldsymbol{E}_{\boldsymbol{0}} \sin \mbox{Š} \boldsymbol{t}$ For semi-transparent medium (poor conductor) $\uparrow << S \nu$. Let $$\check{S}t = \frac{f}{4} \Rightarrow \frac{J_c}{J_d} = \frac{\dagger E_0}{\check{S} \vee E_0} = \frac{\dagger}{\check{S} \vee} << 1 \Rightarrow J_c << J_d$$ Also, $$\check{S}t = \frac{f}{2}$$, $J_c = 0$, $J_d = \check{S} \vee E_0 \Longrightarrow J_c << J_d$ Q10. A particle is moving in a central force field given by $\vec{F} = -\frac{k}{r^3}\hat{r}$, where \hat{r} is the unit vector pointing away from the center of the field. The potential energy of the particle is given by (a) $\frac{k}{r^2}$ (b) $\frac{k}{2r^2}$ (c) $-\frac{k}{r^2}$ (d) $-\frac{k}{2r^2}$ **Topic: Nuclear Physics** **Sub Topic: Potential Energy** Ans. : (d) Solution: $$-\frac{\partial u}{\partial r} = -\frac{k}{r^3} \implies u = \int \frac{k}{r^3} dr = \frac{kr^{-3+1}}{-3+1} + c \implies u = \frac{-k}{2r^2} + c$$ - Q11. Choose the correct statement related to the Fermi energy $\left(E_{\scriptscriptstyle F}\right)$ and the chemical potential - (\sim) of a metal (a) $\sim = E_F$ only at 0K (b) $\sim = E_F$ at finite temperature (c) $\sim < E_F$ at 0K (d) $\sim E_F$ at finite temperature **Topic: Solid State Physics** **Sub Topic: Fermi Energy** Ans. : (a) Solution: In metal the Fermi energy (E_F) is also known as chemical potential (\sim) at absolute zero. $$\mu = \epsilon_F - \frac{\pi^2}{12} \frac{(k_B T)^2}{\epsilon_F}$$ Consider a diatomic molecule formed by identical atoms. If $E_{\scriptscriptstyle V}$ and $E_{\scriptscriptstyle C}$ represent the energy of Q12. the vibrational nuclear motion and electronic motion respectively, then in terms of the electronic mass m and nuclear mass M , $\frac{E_{V}}{E_{C}}$ is proportional to (a) $\left(\frac{m}{M}\right)^{1/2}$ (b) $\frac{m}{M}$ (c) $\left(\frac{m}{M}\right)^{3/2}$ (d) $\left(\frac{m}{M}\right)^2$ **Topic: Molecular Physics** **Sub Topic: Vibrational Energy** Ans. : (a) Solution: $E_V \propto \hbar \check{S} \Rightarrow E_V \propto \sqrt{\frac{k}{M}}$ Q13. Which one of the following relations determines the manner in which the electric field lines are refracted across the interface between two dielectric media having dielectric constants V, and V₂ (see figure)? (a) $V_1 \sin_{11} = V_2 V_3 =$ (b) $V_1 \cos_{11} = V_2 \cos_{11} = V_3 \cos_{11} = V_4 \cos_{11} = V_5 =$ (c) $V_1 \tan_{11} = V_2 \tan_{11} 2$ (d) $V_1 \cot_{y_1} = V_2 \cot_{y_2}$ **Topic: Electromagnetic Theory** **Sub Topic: Boundary Condition** Ans. 13: (d) Solution: Applying the boundary conditions, $\frac{\tan_{\pi_1}}{\tan_{\pi_2}} = \frac{E_1^{\parallel}/E_1^{\perp}}{E_2^{\parallel}/E_2^{\perp}} = \frac{E_2^{\perp}}{E_2^{\perp}}$ $$:: D_1^{\perp} = D_2^{\perp} \Longrightarrow \mathsf{V}_1 E_1^{\perp} = \mathsf{V}_2 E_2^{\perp} \Longrightarrow \frac{E_2^{\perp}}{E_1^{\perp}} = \frac{\mathsf{V}_1}{\mathsf{V}_2}$$ Now, $$\frac{\tan_{"1}}{\tan_{"2}} = \frac{E_2^{\perp}}{E_1^{\perp}} = \frac{V_1}{V_2}$$, So, $\frac{\cot_{"2}}{\cot_{"1}} = \frac{V_1}{V_2} \Rightarrow V_1 \cot_{"1} = V_2 \cot_{"2}$ Q14. If \vec{E} and \vec{B} are the electric and magnetic fields respectively, then $\vec{E} \cdot \vec{B}$ is - (a) odd under parity and even under time reversal - (b) even under parity and odd under time reversal - (c) odd under parity and odd under time reversal - (d) even under parity and even under time reversal **Topic: Electromagnetic Theory** **Sub Topic: Charge, Parity and Time Conservation** Ans.: (c) Solution: Under time reversal \ddagger : E' = E and B' = -B Under parity E' = -E and B' = B So $\vec{E}.\vec{B}$ is odd under parity and time reversal Q15. A small disc is suspended by a fiber such that it is free to rotate about the fiber axis (see figure). For small angular deflections, the Hamiltonian for the disc is given by $$H = \frac{p_{\star}^2}{2I} + \frac{1}{2} \Gamma_{**}^2$$ (a) $$_{mavg} = 0$$ and $_{mrms} = \left(\frac{k_B T}{\Gamma}\right)^{3/2}$ (b) $$_{mavg} = 0$$ and $_{mrms} = \left(\frac{k_B T}{\Gamma}\right)^{1/2}$ (c) $$_{mavg} \neq 0$$ and $_{mrms} = \left(\frac{k_B T}{\Gamma}\right)^{1/2}$ (d) $$_{"avg} \neq 0$$ and $_{"rms} = \left(\frac{k_B T}{r}\right)^{3/2}$ **Topic: Classical Mechanics** **Sub Topic: Hamiltonian** Ans.: (b) Q16. As shown in the figure, an ideal gas is confined to chamber A of an insulated container, with vacuum in chamber B. When the plug in the wall separating the chambers A and B is removed, the gas fills both the chambers. Which one of the following statements is true? - (a) The temperature of the gas remains unchanged - (b) Internal energy of the gas decreases - (c) Temperature of the gas decreases as it expands to fill the space in chamber B - (d) Internal energy of the gas increases as its atoms have more space to move around **Topic: Statistical Mechanics** **Sub Topic: Ideal Gas** Ans.: (a) Solution: Free expansion case, temperature remains unchanged. Particle A with angular momentum $j = \frac{3}{2}$ decays into two particles B and C with angular Q17. momenta j_1 and j_2 , respectively. If $\left|\frac{3}{2},\frac{3}{2}\right\rangle_{\perp} = \Gamma\left|1,1\right\rangle_{\!\scriptscriptstyle B} \otimes \left|\frac{1}{2},\frac{1}{2}\right\rangle_{\!\scriptscriptstyle C}$, the value of Γ **Topic: Nuclear Physics** **Sub Topic: Shell Model** Ans.: 1 Solution: $$\left|\frac{3}{2}, \frac{3}{2}\right\rangle_A = \Gamma \left|1, 1\right\rangle_B \otimes \left|\frac{1}{2}, \frac{1}{2}\right\rangle_C$$ hence $\left|\frac{3}{2}, \frac{3}{2}\right\rangle$ is normalised then $$\left\langle \frac{3}{2}, \frac{3}{2} \middle| \frac{3}{2}, \frac{3}{2} \right\rangle = 1 \Rightarrow \left| \Gamma \right|^2 \left\langle 1, 1 \middle| 1, 1 \right\rangle \otimes \left\langle \frac{1}{2}, \frac{1}{2} \middle| \frac{1}{2}, \frac{1}{2} \right\rangle \Rightarrow \left| \Gamma^2 \middle| = 1 \Rightarrow \Gamma = 1$$ Far from the Earth, the Earth's magnetic field can be approximated as due to a bar magnet of Q18. magnetic pole strength $4\times10^{14}\,\mathrm{Am}$. Assume this magnetic field is generated by a current carrying loop encircling the magnetic equator. The current required to do so is about 4×10^{n} A, where n is an integer. The value of n is \cdot . (Earth's circumference: $4 \times 10^7 m$) **Topic: Electromagnetic Theory** **Sub Topic: Magnetic Pole** Ans. 18: 7 Solution: $M = 4 \times 10^{14} Am$ and $2f R = 4 \times 10^7 m$ $$M \times L = I \times f R^2 \Rightarrow M \times 2R = I \times f R^2 \Rightarrow I = \frac{M \times 2}{f R} = \frac{4 \times 10^{14} \times 2}{2 \times 10^7} = 4 \times 10^7 A \Rightarrow n = 7$$ Q19. The number of distinct ways the primitive unit cell can be constructed for the two dimensional lattice as shown in the figure is . **Topic: Solid State Physics** **Sub Topic: Crystallography** Ans.: 5 Solution: Q20. A hydrogenic atom is subjected to a strong magnetic field. In the absence of spin-orbit coupling, the number of doubly degenerate states created out of the d-level is _____ **Topic: Atomic Physics** **Sub Topic: Paschen back Effect** Ans.: 3 Solution: Number of Zeeman levels in strong field can be found from $$E = (m_L + 2m_s) \sim_B B$$ For d-level: L=2 and S=1/2 $$M_L = +2$$ $+2$ $+1$ $+1$ 0 0 -1 -1 -2 -2 $$M_s = +1/2$$ $-1/2$ $+1/2$ $-1/2$ $+1/2$ $-1/2$ $+1/2$ $-1/2$ $+1/2$ $-1/2$ $$M_L + 2m_s = +3$$ +1 +2 0 +1 -1 0 -2 -1 -3 $$E = +3 \sim_B B$$, $+2 \sim_B B$, $+1 The number of doubly degenerate states are $+\sim_B B, 0, -\sim_B B$ only three. Thus correct answer is 3. Q21. A particle Y undergoes strong decay $Y \rightarrow f^- + f^-$. The isospin of Y is _____ **Topic: Particle Physics** **Sub Topic: Interaction** Ans.: 2 Solution: $Y \rightarrow f^- + f^-$ *I*: 2 1 1 In strong interaction, isospin is conserved, thus the isospin of Y is 2. Q22. For a complex variable z and the contour c:|z|=1 taken in the counter clockwise direction, $$\frac{1}{2fi} \oint_C \left(z - \frac{2}{z} + \frac{3}{z^2} \right) dz = \underline{\qquad}$$ **Topic: Mathematical Physics** **Sub Topic: Complex Analysis** Ans.: -2 Solution: $b_1 = -2 \Rightarrow \frac{1}{2f} \times 2f \ i \times -2 = -2$ Q23. Let p be the momentum conjugate to the generalized coordinate q. If the transformation $$Q = \sqrt{2}q^m \cos p$$ $$P = \sqrt{2}q^m \sin p$$ is canonical, then m = **Topic: classical Mechanics** **Sub Topic: Canonical Transformation** Ans.: 0.5 Solution: $Q = \sqrt{2}q^m \cos p$, $P = \sqrt{2}q^m \sin p$ $$\frac{\partial Q}{\partial q} \cdot \frac{\partial P}{\partial p} - \frac{\partial Q}{\partial p} \cdot \frac{\partial P}{\partial q} = 1$$ $$(\sqrt{2}mq^{m-1}\cos p)(\sqrt{2}q^m\cos p) - (\sqrt{2}q^m(-\sin p)\cdot\sqrt{2}mq^{m-1}\sin p) = 1$$ $$2mq^{2m-1}(\cos^2 p + \sin^2 p) = 1$$ $$2mq^{2m-1} = 1 \implies 2m-1 = 0 \text{ or } m = \frac{1}{2} = 0.5$$ Q24. A conducting sphere of radius 1m is placed in air. The maximum number of electrons that can be put on the sphere to avoid electrical breakdown is about 7×10^n , where n is an integer. The value of n is _____. Assume: Breakdown electric field strength in air is $\left| \vec{E} \right| = 3 \times 10^6 \, V \, / \, m$ Permittivity of free space $V_0 = 8.85 \times 10^{-12} F/m$ Electron charge $e = 1.60 \times 10^{-19} C$ **Topic: electromagnetic Theory** Sub Topic: Coulomb's Law Ans.: 14 Solution: Using Coulomb's law, $E = \frac{1}{4 f \text{V}_0} \frac{N e}{r^2} < 3 \times 10^6 \ V \ / \ m \\ \Rightarrow 9 \times 10^9 \times N \times \frac{1.6 \times 10^{-19}}{1^2} < 3 \times 10^6 \ V \ / \ m$ So, $$N < \frac{10^6}{4.8} \approx 2 \times 10^{15} = 20 \times 10^{14} \implies n \approx 14$$ Q25. If a particle is moving along a sinusoidal curve, the number of degree of freedom of the particle is Topic: Classical Mechanics Sub Topic: Degree of freedom Ans.: 1 Solution: $y = A \sin x$ z = 0 $y = A \sin x$ 3-1-2=1 So, one degree of freedom ## Q26 - Q55 carry two marks each. Q26. The product of eigenvalues of $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ is (a) -1 (b) 1 (c) 0 (d) 2 **Topic: Mathematical Physics** **Sub Topic: Matrices** Ans.: (a) Solution: $\left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \right. \left. \right. \left. \right. \right. \left. \right. \left. \right. \left. \right. \left. \right. \right. = 1 \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) = \left| A \right| = -1$ Q27. Let $|e_1\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, |e_2\rangle = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, |e_3\rangle = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. Let $S = \{|e_1\rangle, |e_2\rangle, |e_3\rangle\}$. Let \mathbb{R}^3 denote the three-left content of the second second content of the seco dimensional real vector space. Which one of the following is correct? (a) S is an orthonormal set (b) S is a linearly dependent set (c) $$S$$ is a basis for \mathbb{R}^3 (d) $$\sum_{i=1}^{3} |e_i\rangle\langle e_i| = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$ **Topic: Mathematical Physics** **Sub Topic: Matrices** Ans.: (c) Solution: $\langle e_1 | e_2 \rangle \neq 0$ (i) is false $$c_{1} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + c_{2} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + c_{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 0$$ $$c_1 + c_2 + c_3 = 0$$ $$c_3 = 0, c_2 = 0, c_1 = 0$$ $$c_2 + c_3 = 0$$ $$c_2 = 0$$ $|e_2\rangle,\langle e_5\rangle$ is limits indeed so $\langle 2|1\rangle$ is correct. Option (c) is correct. Q28. \hat{S}_x denotes the spin operator defined $\hat{S}_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Which one of the following is correct? (a) The eigenstates of spin operator $$\hat{S}_x$$ are $\left|\uparrow\right\rangle_x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\left|\downarrow\right\rangle_x = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (b) The eigenstates of spin operator $$\hat{S}_x$$ are $\left|\uparrow\right\rangle_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $\left|\uparrow\right\rangle_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ (c) In the spin state $$\frac{1}{2} \binom{1}{\sqrt{3}}$$, upon the measurement of \hat{S}_x , the probability for obtaining $|\uparrow\rangle_x$ is $$\frac{1}{4}$$ (d) In the spin state $$\frac{1}{2} \binom{1}{\sqrt{3}}$$, upon the measurement of \hat{S}_x , the probability for obtaining $|\uparrow\rangle_x$ is $$\frac{2+\sqrt{3}}{4}$$ **Topic: Quantum Mechanics** **Sub Topic: Postulates** Ans.: (d) Solution: $$S_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$ Eigen value of $\frac{\hbar}{2}$, $\frac{-\hbar}{2}$ and corresponds eigen state $$\left|\uparrow\right\rangle_{n} = \left|Q_{1}\right\rangle = \frac{1}{\sqrt{2}} \left(\frac{1}{1}\right) \left|\downarrow\right\rangle_{3} = \left|Q_{2}\right\rangle = \frac{1}{\sqrt{2}} \left(\frac{1}{-1}\right)$$ $$(1) \left\langle 1 \times \right\rangle = \frac{1}{2} \left(\frac{1}{\sqrt{3}} \right)$$ $$\langle Q_1 | \times \rangle = \frac{\left| \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \end{pmatrix} \cdot \frac{1}{2} \left(\frac{1}{\sqrt{3}} \right) \right|^2}{\frac{1}{2} \left(1\sqrt{3} \right) \cdot \frac{1}{2} \left(\frac{1}{\sqrt{3}} \right)} = \left| \frac{1}{2\sqrt{2}} \left(1 + \sqrt{3} \right) \right|^2$$ $$=\frac{\left(1+\sqrt{3}\right)^2}{8}=\frac{1+3+2\sqrt{3}}{8}=\frac{4+2\sqrt{3}}{8}=\frac{2+\sqrt{3}}{4}$$ Option (d) is correct. Q29. The input voltage (V_{in}) to the circuit shown in the figure is $2\cos(100t)V$. The output voltage $$(V_{out})$$ is $2\cos\left(100t-\frac{f}{2}\right)V$. If $R=1k\Omega$, the value of C (in $\sim F$) is $$V_{in} = V_{out} = V_{out}$$ (a) 0.1 (b) 1 (c) 10 (d) 100 **Topic: Electronics** **Sub Topic: Operational amplifier** Ans.: (c) Ans.: (c) Solution: $$V_{out} = -\frac{R}{R}V_{in} + \left(1 + \frac{R}{R}\right)(Voltage \text{ across C})$$ $$V_{out} = -\frac{R}{R}V_{in} + \left(1 + \frac{R}{R}\right)\left(\frac{X_C}{R + X_C}\right)V_{in}$$ $$\Rightarrow V_{out} = -V_{in} + 2\left(\frac{1/j\check{S}C}{R + 1/j\check{S}C}\right)V_{in}$$ $$\Rightarrow \frac{V_{out}}{V_{in}} = -1 + 2\left(\frac{1}{j\check{S}CR + 1}\right) = \left(\frac{1 - j\check{S}CR}{1 + j\check{S}CR}\right)$$ $$\Rightarrow \frac{V_{out}}{V_{in}} = \left(\frac{\sqrt{1 + (\check{S}CR)^2}}{\sqrt{1 + (\check{S}CR)^2}}\right)\frac{e^{-j.}}{e^{j.}} = e^{-j2.} \qquad \text{where } _{ii} = \tan^{-1}(\check{S}RC)$$ Thus $W = -2_{ii} = -2\tan^{-1}(\check{S}RC) \Rightarrow -\frac{f}{2} = -2\tan^{-1}(100 \times 1 \times 10^3 \times C)$ $$\Rightarrow 10^5 \times C = \tan^{-1}\left(\frac{f}{4}\right) \Rightarrow C = \frac{1}{10^5}F = 10 \sim F$$ Website: www.pravegaaeducation@gmail.com | Email: pravegaaeducation@gmail.com | Q30. Consider a 4-bit counter constructed out of four flip-flops. It is formed by connecting the J and K inputs to logic high and feeding the Q output to the clock input of the following flip-flop (see the figure). The input signal to the counter is a series of square pulses and the change of state is triggered by the falling edge. At time $t=t_0$ the outputs are in logic low state $Q_0=Q_1=Q_2=Q_3=0$. Then at $t=t_1$, the logic state of the outputs is (a) $$Q_0 = 1, Q_1 = 0, Q_2 = 0$$ and $Q_3 = 0$ (b) $$Q_0 = 0, Q_1 = 0, Q_2 = 0$$ and $Q_3 = 1$ (c) $$Q_0 = 1, Q_1 = 0, Q_2 = 1$$ and $Q_3 = 0$ (d) $$Q_0 = 0, Q_1 = 1, Q_2 = 1$$ and $Q_3 = 1$ **Topic: Electronics** **Sub Topic: Flip-Flop** Ans. : (b) Solution: Consider the Lagrangian $L = a \left(\frac{dx}{dt}\right)^2 + b \left(\frac{dy}{dt}\right)^2 + cxy$, where a,b and c are constants. If p_x Q31. and $p_{\scriptscriptstyle y}$ are the momenta conjugate to the coordinates x and y respectively, then the Hamiltonian is (a) $$\frac{p_x^2}{4a} + \frac{p_y^2}{4b} - cxy$$ (b) $$\frac{p_x^2}{2a} + \frac{p_y^2}{2b} - cxy$$ (c) $$\frac{p_x^2}{2a} + \frac{p_y^2}{2b} + cxy$$ (d) $$\frac{p_x^2}{a} + \frac{p_y^2}{b} + cxy$$ **Topic: Classical Mechanics** **Sub Topic: Hamiltonian** Ans.: (a) Solution: $L = a\dot{x}^2 + b\dot{y}^2 + cxy$ $$\frac{\partial L}{\partial \dot{x}} = p_x = 2a\dot{x} \Rightarrow \dot{x} = \frac{p_x}{2a}$$ and $\frac{\partial L}{\partial \dot{y}} = p_y = 2a\dot{y} \Rightarrow \dot{y} = \frac{p_y}{2a}$ $$H = p_x \dot{x} + p_y \dot{y} - L \Rightarrow H = 2a\dot{x}^2 + 2b\dot{y}^2 - (a\dot{x}^2 + b\dot{y}^2 + cxy)$$ $$\Rightarrow H = a\dot{x}^2 + b\dot{y}^2 - cxy = \frac{p_x^2}{4a} + \frac{p_y^2}{4b} - cxy$$ Which one of the following matrices does NOT represent a proper rotation in a plane? Q32. (a) $$\begin{pmatrix} -\sin_{"} & \cos_{"} \\ -\cos_{"} & -\sin_{"} \end{pmatrix}$$ (b) $$\begin{pmatrix} \cos_{"} & \sin_{"} \\ -\sin_{"} & \cos_{"} \end{pmatrix}$$ (c) $$\begin{pmatrix} \sin_{"} & \cos_{"} \\ -\cos_{"} & \sin_{"} \end{pmatrix}$$ (d) $$\begin{pmatrix} -\sin_{n} & \cos_{n} \\ -\cos_{n} & \sin_{n} \end{pmatrix}$$ **Topic: Mathematical Physics** **Sub Topic: Rotational Matrix** Ans.: (d) Solution: Rotational matrix is orthogonal matrix (1) $$\sin^2 \pi - (-\cos^2 \pi) = 1$$ (2) $$\sin^2 \pi - (\cos^2 \pi) = 1$$ (3) $$-\sin^2 \pi - (-\cos^2 \pi) = \cos^2 \pi - \sin^2 \pi = \cos^2 \pi$$ (4) $$\cos^2 \pi - (-\sin^2 \pi) = 1$$ Q33. A uniform magnetic field $\vec{B} = B_0 \hat{y}$ exists in an internal frame K. A perfect conducting sphere moves with a constant velocity $\vec{v} = v_0 \hat{x}$ with respect to this inertial frame. The rest frame of the sphere is K' (see figure). The electric and magnetic fields in K and K' are related as $$\begin{split} \vec{E}_{\parallel}' &= \vec{E}_{\parallel} & \qquad \vec{E}_{\perp}' = \mathbf{X} \left(\vec{E}_{\perp} + \vec{v} \times \vec{B} \right) \\ \vec{B}_{\parallel}' &= \vec{B}_{\parallel} & \qquad \vec{B}_{\perp}' = \mathbf{X} \left(\vec{B}_{\perp} - \frac{\vec{v}}{c^2} \times \vec{E} \right) \end{split} \right\}, \\ \mathbf{X} &= \frac{1}{\sqrt{1 - \left(v/c \right)^2}}$$ The induced surface charge density on the sphere (to the lowest order in v/c) in the frame K' is - (a) maximum along z' - (b) maximum along y' - (c) maximum along x' - (d) uniform over the sphere **Topic: Classical Mechanics** **Sub Topic: STR** Ans.: (a) Q34. A charge q moving with uniform speed enters a cylindrical region in free space at t=0 and exits the region at t=1 (see figure). Which one of the following options best describes the time dependence of the total electric flux $\{(t)$, through the entire surface of the cylinder? (a) (b) (c) (d) **Topic: Electromagnetic Theory** **Sub Topic: Gauss Law** Ans. 34: (d) Solution: Flux through the closed surface $=\frac{Q_{enc}}{V_0}$ = constant when charge is inside otherwise zero when it will leave the cylindrical region. - Q35. Consider a one-dimensional non-magnetic crystal with one atom per unit cell. Assume that the valence electrons (i) do not interact with each other and (ii) interact weakly with the ions. If n is the number of valence electrons per unit cell, then at $0\ K$, - (a) the crystal is metallic for any value of n - (b) the crystal is non-metallic for any value of n - (c) the crystal is metallic for even values of n - (d) the crystal is metallic for odd values of n **Topic: Solid Sate Physics** **Sub Topic: Free electron Theory** Ans.: (d) Solution: The conduction band is partially filled for odd value of n and hence behaves as a metal. The band is totally filled for even value of n and known as non-metallic. Thus, correct option is (d) Q36. According to the Fermi gas model of nucleus, the nucleons move in a spherical volume of radius R (= $R_0A^{\frac{1}{3}}$, where A is the mass number and R_0 is an empirical constant with the dimensions of length). The Fermi energy of the nucleus E_F is proportional to (a) R_0^2 - (b) $\frac{1}{R_0}$ - (c) $\frac{1}{R_0^2}$ - (d) $\frac{1}{R_0^3}$ **Topic: Nuclear Physics** **Sub Topic: Fermi Energy** Ans.: (c) Solution: Fermi energy $E_F = \frac{\hbar^2}{2m} \left(3f^2 \frac{N}{V} \right)^{2/3}$ $$V = \frac{4f}{3}R^{3} = \frac{4f}{3}\left(R_{0}A^{1/3}\right)^{3} = \frac{4f}{3}R_{0}^{3}A : E_{F} = \frac{\hbar^{2}}{2m}\left(\frac{3f^{2}N}{\frac{4f}{3}R_{0}^{3}A}\right)^{2/3} = \frac{\hbar^{2}}{2m}\left(\frac{9fN}{4A} \cdot \frac{1}{R_{0}^{3}}\right)^{2/3} \Rightarrow E_{F} \propto \frac{1}{R_{0}^{2}}$$ Thus correct option is (c) Q37. Consider a two dimensional crystal with 3 atoms in the basis. The number of allowed optical branches (n) and acoustic branches (m) due to the lattice vibrations are (a) $$(n,m)=(2,4)$$ (b) $$(n,m) = (3,3)$$ (c) $$(n,m)=(4,2)$$ (d) $$(n,m)=(1,5)$$ **Topic: Solid state physics** **Sub Topic: Diatomic Lattice** Ans.: (c) Solution: For p -atoms per basis Total degree of freedom = 2p Number of acoustical branches (n) = 2 Number of optical branches (n) = 2p - 2 For p = 3 $$m = 2$$ and $n = 2 \times 3 - 2 = 4$ $$\therefore (n,m)=(4,2)$$ Thus correct option is (c) Q38. The internal energy U of a system is given by $U(S,V) = V^{-2/3}S^2$, where Y is a constant of appropriate dimensions; Y and Y denote the volume and entropy, respectively. Which one of the following gives the correct equation of state of the system? (a) $$\frac{PV^{1/3}}{T^2} = \text{constant}$$ (b) $$\frac{PV}{T^{1/3}}$$ = constant (c) $$\frac{P}{V^{1/3}T}$$ = constant (d) $$\frac{PV^{2/3}}{T} = \text{constant}$$ **Topic: Thermodynamics** **Sub Topic: Ideal Gas** Ans.: (a) Solution: dU = TdS - PdV $$\left(\frac{\partial U}{\partial S}\right)_{V} = T, \ \left(\frac{\partial U}{\partial V}\right)_{S} = -P$$ $$2\}V^{-2/3}S = T \text{ and } -\frac{2}{3}\}V^{-5/3}S^2 = -P$$ $$\Rightarrow \frac{PV}{TS} = \text{constant} \Rightarrow \frac{PV}{T(TV^{2/3})} = \text{constant}$$ $$\Rightarrow \frac{PV^{1/3}}{T^2} = \text{constant}$$ Q39. The potential energy of a particle of mass m is given by $$U(x) = a \sin(k^2 x - f/2), \quad a > 0, \quad k^2 > 0$$ The angular frequency of small oscillations of the particle about x = 0 is (a) $$k^2 \sqrt{\frac{2a}{m}}$$ (b) $$k^2 \sqrt{\frac{a}{m}}$$ (c) $$k^2 \sqrt{\frac{a}{2m}}$$ (a) $$k^2 \sqrt{\frac{2a}{m}}$$ (b) $k^2 \sqrt{\frac{a}{m}}$ (c) $k^2 \sqrt{\frac{a}{2m}}$ (d) $2k^2 \sqrt{\frac{a}{m}}$ **Topic: Classical Mechanics** **Sub Topic: Small Oscillations** Ans.: (b) Solution: $$U(x) = a \sin(k^2 x - f/2)$$, $a > 0$, $k^2 > 0$ $$\Rightarrow U(x) = -a\cos^2 k^2 x = -a \left[1 - \frac{k^4 x^2}{L^2} + \cdots \right]$$ $$\Rightarrow F = -\frac{\partial U}{\partial x} = -ak^4x \implies \tilde{S}^2 = \frac{ak^4}{m} \Rightarrow \tilde{S} = k^2 \sqrt{\frac{a}{m}}$$ The radial wave function of a particle in a central potential is give by $R(r) = A \frac{r}{a} \exp\left(-\frac{r}{2a}\right)$, Q40. where A is the normalization constant and a is positive constant of suitable dimensions. If xa is the most probable distance of the particle from the force center, the value of x is **Topic: Quantum Mechanics** **Sub Topic: Radial Wave Function** Ans.: 4 Solution: $$R(r) = A \frac{r}{a} \exp\left(-\frac{r}{2a}\right)$$ Radial probability derivative $$p(r) = r^2 |R|^2 = \frac{r^4}{a^2} e^-(r/a)$$ For must portable distance $$\frac{dp}{dr} = 0$$ $$\frac{4r^3}{a^2}e^{-r/a_{S}} + \frac{r^4}{a^2}e^{-r/a} - \frac{1}{a} = 0$$ $$\frac{r^3 e^{-r/a_0}}{a^2} \left[4 - \frac{r}{a} \right] = 0$$ $$r = 4a = \notin a$$ Q41. A free particle of mass M is located in a three-dimensional cubic potential well with impenetrable walls. The degeneracy of the fifth excited state of the particle is ______ **Topic: Quantum mechanics** **Sub Topic: Infinite potential well** Ans.: 6 Solution: Energy eigen value for particle in cubical $= (n_x^2 + n_y^2 + n_z^2)E_0$ where $E_0 = \frac{f^2\hbar^2}{2ma^2}$. Ground state $E_{1.1.1} = 3E_0$ First $$E_{2.1.1} = E_{1.2.1} = E_{1.1.2} = 6E_0$$ Second Excited state $E_{2,2,1} = E_{2,1,2} = E_{1,2,2} = 9E_0$ Third Excited state $E_{\rm 3,1,1} = E_{\rm 1,3,1} = E_{\rm 1,1,3} = 11E_{\rm 0}$ Fourth Excited state $E_{2,2,2} = 12E_0$ non-conducting Fifth Excited state $$E_{1,2,3} = E_{1,3,2} = E_{2,1,3} = E_{2,3,1} = E_{3,1,2} = E_{3,2,1} = 14E_0$$ So fifth excited state has 6 total diagram. Q42. Consider the circuit given in the figure. Let the forward voltage drop across each diode be $\,0.7V$. The current I (in mA) through the resistor is ______. **Topic: Electronics** **Sub Topic: diode** Ans.: 8 Solution: Appying KVL in given circuit $10 + I \times 1 K\Omega + 3 \times 0.7 = 0$ Current $$I = \frac{10.1V - 3 \times 0.7V}{1k\Omega} = 8mA$$ Q43. Let u^- denote the 4-velocity of a relativistic particle whose square $u^-u_-=1$. If $v_{-\epsilon_-+}$ is the Levi-Civita tensor then the value of $v_{-\epsilon_-+}u^-u^-u^+$ is _____. **Topic: Mathematical Physics** **Sub Topic: Tensor** Ans.: 0 Q44. Consider a simple cubic monoatomic Bravais lattice which has a basis with vectors $\vec{r}_1=0, \vec{r}_2=\frac{a}{4}(\hat{x}+\hat{y}+\hat{z}), \ a$ is the lattice parameter. The Bragg reflection is observed due to the change in the wave vector between the incident and the scattered beam as given by $\vec{K}=n_1\vec{G}_1+n_2\vec{G}_2+n_3\vec{G}_3$, where \vec{G}_1,\vec{G}_2 and \vec{G}_3 are primitive reciprocal lattice vectors. For $n_1=3,n_2=3$ and $n_3=2$, the geometrical structure factor is ______ **Topic: Solid state physics** **Sub Topic: Atomic structure factor** Ans.: 2 Solution: The value of $$\left(X_N,Y_N,Z_N\right)=\left(\frac{1}{4},\frac{1}{4},\frac{1}{4}\right)$$ $n_1=3,n_2=3$ and $n_3=2$ Geometric structure factor $$S = \sum_{N=1}^{2} e^{2fi(n_1x_N + n_2y_N + n_3z_n)} = 1 + e^{2fi\left(\frac{3}{4} + \frac{3}{4} + \frac{2}{4}\right)} = 1 + e^{2fi\left(\frac{8}{4}\right)} = 1 + e^{4fi} = 1 + 1 = 2$$ $$\Rightarrow S = 2$$ Q45. A plane electromagnetic wave of wavelength $\}$ is incident on a circular loop of conducting wire. The loop radius is $a(a << \})$. The angle (in degrees), made by the Poynting vector with the normal to the plane of the loop to generate a maximum induced electrical signal, is _______ **Topic: Electromagnetic theory** **Sub Topic: Poynting vector** Ans.: -270 or -90 or 90 or 270 Q46. An electron in a hydrogen atom is in the state n=3, l=2, m=-2. Let \hat{L}_y denote the ycomponent of the orbital angular momentum operator. If $\left(\Delta \hat{L}_y\right)^2 = \Gamma \hbar^2$, the value of Γ is **Topic: Quantum mechanics** **Sub Topic: Angular momentum** Ans.: 1 Solution: $$\left(\Delta L_{y}\right) = \sqrt{\left\langle L_{y}^{2}\right\rangle - \left\langle L_{y}\right\rangle^{2}} \left(L_{+}, L_{-}\right) = z_{i}l_{z}$$ $$\left\langle L_{y}\right\rangle = 0$$ $$L_{y}^{2} = \frac{\hbar^{2}}{2} \left(l, l+1-m^{2}\right) \quad l=2 \ m-2$$ $$= \frac{\hbar^{2}}{2} \left(2\left(3\right)-4\right) = \frac{\hbar^{2}}{2} z \pm 1\hbar^{2}$$ $$\left(\Delta L_{y}\right) = \hbar \qquad \left(\Delta L_{y}\right)^{2} = \hbar^{2} \qquad r=1$$ Q47. A sinusoidal voltage of the form $V(t) = V_0 \cos(\check{S}t)$ is applied across a parallel plate capacitor placed in vacuum. Ignoring the edge effects, the induced emf within the region between the capacitor plates can be expressed as a power series in S. The lowest non-vanishing exponent in S is ______ **Topic: Electromagnetic theory** Sub Topic: Ampere's law Ans.: 2 Solution: Using Ampere's law, $$\oint \vec{B} \cdot d\vec{l} = {}^{\sim}{}_{0}I_{enc} + {}^{\sim}{}_{0}V_{0}\int_{c} \frac{\partial \vec{E}}{\partial t} \cdot d\vec{a}$$ Consider an amperian loop of radius r(r < R), then $I_{enc} = 0$ and since Only displacement current component is present. $$E(t) = \frac{V(t)}{d} = \frac{V_0 \cos \check{S}t}{d}$$ For uniform potential w.r.t. position Thus $$B \times 2f r = {}^{\sim}_{0} \mathsf{V}_{0} \times \left(-\frac{V_{0} \check{\mathsf{S}} \sin \check{\mathsf{S}} t}{d} \right) \times f r^{2} \implies B \propto \check{\mathsf{S}} \sin \check{\mathsf{S}} t$$ Induced e.m.f. $$V \propto \frac{dB}{dt} \propto \tilde{S}^2 \cos \tilde{S}t \propto \tilde{S}^2 \left(1 - \frac{\tilde{S}^2 t^2}{2} + ...\right)$$ (using cosine series) H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016 The lowest non-vanishing exponent in S is n = 2. Q48. If $$x = \sum_{k=1}^{\infty} a_k \sin kx$$, for $-f \le x \le f$, the value of a_2 is_____ **Topic: Mathematical Physics** **Sub Topic: Fourier series** Ans.: -1 Solution: $x \sin kx = a_k \sin^2 kx$ $$\int_{-f}^{f} x \sin kx dx = 2a_k \int_{-f}^{f} h^2 k_x dx = a_k^2 \left[\frac{1 - \cos 2kx}{2} \right]^{f} = a_k \frac{f}{2} \cdot 2$$ $$a_k = \frac{2}{f} \left[x \left(\frac{-\cos kx}{k} \right) - 1 \left(\frac{-\sin kx}{k^2} \right) \right]_0^f = \frac{-4}{f} \cdot \frac{f}{k} \left(-1 \right)^k$$ $$a_2 = -\frac{4}{2}(-1)^2 = -1$$ Q49. Let $$f_n(x) = \begin{cases} 0, & x < -\frac{1}{2n} \\ n, & -\frac{1}{2n} < x < \frac{1}{2n} \\ 0, & \frac{1}{2n} < x \end{cases}$$ The value of $\lim_{n\to\infty}\int_{-\infty}^{\infty}f_n(x)\sin xdx$ is_____. **Topic: Mathematical Physics** **Sub Topic: Fourier series** Ans.: 0 Solution: $$\lim_{n \to \infty} \int_{-1/m}^{1/m} x \sin x \, dx = -n \left[\cos \frac{1}{m} - \cos \frac{-1}{m} \right] = 0$$ Q50. Consider the Hamiltonian $\hat{H} = \hat{H}_0 + \hat{H}'$ where $$\hat{H}_0 = \begin{pmatrix} E & 0 & 0 \\ 0 & E & 0 \\ 0 & 0 & E \end{pmatrix} \text{ and } \hat{H}' \text{ is the time independent perturbation given by}$$ #: +91-89207-59559 Website: www.pravegaaeducation.com | Email: pravegaaeducation@gmail.com $$\hat{H}' = \begin{pmatrix} 0 & k & 0 \\ k & 0 & k \\ 0 & k & 0 \end{pmatrix} \text{, where } k>0 \text{ . If, the maximum energy eigenvalues of } \hat{H} \text{ is } 3eV$$ corresponding to E=2eV , the value of k (rounded off to three decimal places) in eV is _____ **Topic: Quantum mechanics** **Sub Topic: Perturbation** Ans.: 0.706 to 0.708 Solution: $$H_0 = \begin{bmatrix} E & 0 & 0 \\ 0 & E & 0 \\ 0 & 0 & E \end{bmatrix}$$ $$H' = \begin{pmatrix} 0 & k & 0 \\ x & 0 & x \\ 0 & x & 0 \end{pmatrix}$$ Eigen value of H' $$\begin{pmatrix} -\} & k & 0 \\ k & -\} & k \\ 0 & x & -\} \end{pmatrix} = 0$$ $$- \left\{ \left\{ \right\}^2 - k^2 \right\} - k \left(- \right\} k \right) = 0 \Rightarrow - \left\{ \left\{ \right\}^2 - k^2 \right\} + \left\{ \right\} k^2 = 0$$ $$\}^{3} + \}k^{2} + \}k^{2} = 0 \Rightarrow \}^{3} + 2\}k^{2} = 0$$ $$\left\{ \left(-\right\} ^{2}+k^{2}\right) =0$$ $\left\{ =0\right\} =k,\ \left\{ =-k\right\} =-k$ $$E_1 = E - k$$ $$E_2 = E + k$$ where $E = 2ev$ $$E_3 = E + k$$ $$E_3 = E + k$$ $E_3 = 3ev$ $k = 3ev - 2ev = 1ev$ Q51. A hydrogen atom is in an orbital angular momentum state $|l,m=l\rangle$. If \vec{L} lies on a cone which makes a half angle 30° with respect to the z-axis, the value of l is ______ **Topic: Quantum mechanics** **Sub Topic: Hydrogen Atom** Ans.: 3 Solution: $\cos 30 = \frac{m}{\sqrt{l(l+1)}}$ m=l $$\frac{\sqrt{3}}{2} = \frac{l}{\sqrt{l(l+1)}} = \sqrt{3}\left(\sqrt{l(l+1)}\right) = 2l$$ $$3(l^2+l)=4l^2$$ $$3l = l^2 \implies l = 3$$ **Topic: Nuclear Physics** **Sub Topic:** Ans.: 6999 Solution: Assuming that protons and anti-protons are produced at rest with mass $1 GeV/c^2$ For the balance of equation there is $\Gamma+2$ number of proton and there is Γ number of antiproton must be there $p+p \to p+p+\Gamma p+\Gamma n$ From the conservation of energy $$7000GeV + 7000GeV = 1GeV(r + 2) + 1GeVr \Rightarrow 2r + 2 = 1400GeV$$ So $$r = \frac{13998}{2} = 6999$$ Q53. Consider a gas of hydrogen atoms in the atmosphere of the Sun where the temperature is $5800\,K$. If a sample from this atmosphere contains 6.023×10^{23} of hydrogen atoms in the ground state, the number of hydrogen atoms in the first excited state is approximately 8×10^n , where n is an integer. The value of n is ______. (Boltzmann constant: $8.617\times10^{-5}\,eV/K$) **Topic: Atomic Physics** **Sub Topic: Population** Ans.: 14 Solution: $$\frac{N_1}{N_0} = e^{-\Delta E/kT}$$ $$\Delta E = \left(\frac{13 \cdot 6}{12} - \frac{13 \cdot 6}{2^2}\right) ev = \left(13 \cdot 6 - 3 \cdot 4\right) = 10 \cdot 2eV$$ $$\therefore \frac{\Delta E}{kT} = \frac{10.2eV}{8.617 \times 10^{-5} ev/k \times 5800k} = 20.41$$ Thus $$\frac{N_1}{N_0} = e^{-20.41} \Rightarrow N_1 = 6 \cdot 023 \times 10^{23} \times 1 \cdot 37 \times 10^{-9}$$ $$\therefore n = 14$$ Q54. For a gas of non-interacting particles, the probability that a particle has a speed v in the internal v to v+dv is given by $$f(v)dv = 4f v^2 dv \left(\frac{m}{2f k_B T}\right)^{3/2} e^{-mv^2/2k_B T}$$ If E is the energy of a particle, then the maximum in the corresponding energy distribution in units of E/k_BT occurs at _____ (rounded off to one decimal place). **Topic: Statistical Mechanics** **Sub Topic: Distribution Function** Ans.: 0.5 Solution: $$E_P = \frac{1}{2}k_BT \Rightarrow \frac{\frac{1}{2}k_BT}{k_BT} = 0.5$$ Q55. The Planck's energy density distribution is given by $u(\check{S}) = \frac{\hbar \check{S}^3}{f^2 c^3 (e^{\hbar \check{S}/k_B T} - 1)}$. At long wavelengths, the energy density of photons in thermal equilibrium with a cavity at temperature T varies as T^r , where r is ______ **Topic: Statistical Mechanics** Sub Topic: Planck's Law Ans.: 1 Solution: $$u(\check{S}) = \frac{\hbar \check{S}^3}{f^2 c^3 \left(1 + \frac{\hbar \check{S}}{k_B T} + \dots - 1\right)}$$ $$\frac{kc}{\tilde{S}} = 1$$ $$\tilde{S} = 2f c$$ $$\check{S} = \frac{2f c}{\}}$$ $$u(\check{S}) \propto T'$$ } long higher term neglected.