Pravegaea Education

IIT-JAM 2019
 SECTION - A
 MULTIPLE CHOICE QUESTIONS (MCQ)

Q1. - Q10. Carry one mark each.

Q1. The function $f(x)=\frac{8 x}{x^{2}+9}$ is continuous everywhere except at
(a) $x=0$
(b) $x= \pm 9$
(c) $x= \pm 9 i$
(d) $x= \pm 3 i$

Q2. A classical particle has total energy E. The plot of potential energy (U) as a function of distance (r) from the centre of force located at $r=0$ is shown in the figure. Which of the regions are forbidden for the particle?
(a) I and II
(b) II and IV
(c) I an IV
(d) I and III

Q3. In the thermal neutron induced fission of ${ }^{235} U$, the distribution of relative number of the observed fission fragments (Yield) versus mass number (A) is given by
(a)

(b)

(c)

(d)

Q4. Which one of the following crystallographic planes represent (101) Miller indices of a cubic unit cell?
(a)

(b)

(c)

(d)

Q5. The Fermi-Dirac distribution function $[n(\varepsilon)]$ is (k_{B} is the Boltzmann constant, T is the temperature and ε_{F} is the Fermi energy)
(a) $n(\varepsilon)=\frac{1}{e^{\frac{\varepsilon-\varepsilon_{F}}{k_{B} T}}-1}$
(b) $n(\varepsilon)=\frac{1}{e^{\frac{\varepsilon_{F}-\varepsilon}{k_{B} T}}-1}$
(c) $n(\varepsilon)=\frac{1}{e^{\frac{\varepsilon-\varepsilon_{F}}{k_{B} T}}+1}$
(d) $n(\varepsilon)=\frac{1}{e^{\frac{\varepsilon_{F_{B}-\varepsilon}}{k_{B}}}+1}$

Pravegate Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics \# 8920759559, 9971585002 | www.pravegaa.com

Q6. If $\phi(x, y, z)$ is a scalar function which satisfies the Laplace equation, then the gradient of ϕ is
(a) Solenoidall and irrigational
(b) Solenoidall but not irrotational
(c) Irrotational but not solenoid
(d) Neither Solenoidall nor irrotational

Q7. In a heat engine based on the Carnot cycle, heat is added to the working substance at constant
(a) Entropy
(b) Pressure
(c) Temperature
(d) Volume

Q8. Isothermal compressibility is given by
(a) $\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}$
(b) $\frac{1}{P}\left(\frac{\partial P}{\partial V}\right)_{T}$
(c) $-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}$
(d) $-\frac{1}{P}\left(\frac{\partial P}{\partial V}\right)_{T}$

Q9. For using a transistor as an amplifier, choose the correct option regarding the resistances of base-emitter ($R_{B E}$) and base-collector ($R_{B C}$) junctions
(a) Both $R_{B E}$ and $R_{B C}$ are very low
(b) Very low $R_{B E}$ and very high $R_{B C}$
(c) Very high $R_{B E}$ and very low $R_{B C}$
(d) Both $R_{B E}$ and $R_{B C}$ are very high

Q10. A unit vector perpendicular to the plane containing $\vec{A}=\hat{i}+\hat{j}-2 \hat{k}$ and $\vec{B}=2 \hat{i}-\hat{j}+\hat{k}$ is
(a) $\frac{1}{\sqrt{26}}(-\hat{i}+3 \hat{j}-4 \hat{k})$
(b) $\frac{1}{\sqrt{19}}(-\hat{i}+3 \hat{j}-3 \hat{k})$
(c) $\frac{1}{\sqrt{35}}(-\hat{i}+5 \hat{j}-3 \hat{k})$
(d) $\frac{1}{\sqrt{35}}(-\hat{i}-5 \hat{j}-3 \hat{k})$

Q11. - Q30. Carry two marks each.

Q11. A thin lens of refractive index $\frac{3}{2}$ is kept inside a liquid of refractive index $\frac{4}{3}$. If the focal length of the lens in air is 10 cm , then the focal length inside the liquid is
(a) 10 cm
(b) 30 cm
(c) 40 cm
(d) 50 cm

Q12. The eigenvalues of $\left(\begin{array}{ccc}3 & i & 0 \\ -i & 3 & 0 \\ 0 & 0 & 6\end{array}\right)$ are
(a) 2,4 and 6
(b) $2 i, 4 i$ and 6
(c) $2 i, 4$ and 8
(d) 0,4 and 8

Q13. For a quantum particle confined inside a cubic box of side L, the ground state energy is given by E_{0}. The energy of the first excited state is
(a) $2 E_{0}$
(b) $\sqrt{2} E_{0}$
(c) $3 E_{0}$
(d) $6 E_{0}$

Pravegaad Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics \# 8920759559, 9971585002 | www.pravegaa.com

Q14. A small spherical ball having charge q and mass m, is tied to a thin massless non-conducting string of length l. The other end of the string is fixed to an infinitely extended thin nonconducting sheet with uniform surface charge density σ. Under equilibrium the string makes an angle 45° with the sheet as shown in the figure. Then σ is given by (g is the acceleration due to gravity and ε_{0} is the permittivity of free space)
(a) $\frac{m g \varepsilon_{0}}{q}$
(b) $\sqrt{2} \frac{m g \varepsilon_{0}}{q}$
(c) $2 \frac{m g \varepsilon_{0}}{q}$
(d) $\frac{m g \varepsilon_{0}}{q \sqrt{2}}$

Q15. Consider the normal incidence of a plane electromagnetic wave with electric field given by $\vec{E}=E_{0} \exp \left[k_{1} z-\omega t\right] \hat{x}$ over an interface at $z=0$ separating two media [wave velocities v_{1} and $v_{2}\left(v_{2}>v_{1}\right)$ and wave vectors k_{1} and k_{2}, respectively] as shown in figure. The magnetic field vector of the reflected wave is (ω is the angular frequency)

(a) $\frac{E_{0}}{v_{1}} \exp \left[i\left(k_{1} z-\omega t\right)\right] \hat{y}$
(b) $\frac{E_{0}}{v_{1}} \exp \left[i\left(-k_{1} z-\omega t\right)\right] \hat{y}$
(c) $\frac{-E_{0}}{v_{1}} \exp \left[i\left(-k_{1} z-\omega t\right)\right] \hat{y}$
(d) $\frac{-E_{0}}{v_{1}} \exp \left[i\left(k_{1} z-\omega t\right)\right] \hat{y}$

Q16. The output of following logic circuit can be simplified to
(a) $X+Y Z$
(b) $Y+X Z$
(c) $X Y Z$
(d) $X+Y+Z$

Pravegaal Education

Q17. A red star having radius r_{R} at a temperature T_{R} and a white star having radius r_{w} at a temperature T_{w}, radiate the same total power. If these stars radiate as perfect black bodies, then
(a) $r_{R}>r_{w}$ and $T_{R}>T_{w}$
(b) $r_{R}<r_{w}$ and $T_{R}>T_{w}$
(c) $r_{R}>r_{w}$ and $T_{R}<T_{w}$
(d) $r_{R}<r_{w}$ and $T_{R}<T_{w}$

Q18. The mass per unit length of a rod (length 2 m) varies as $\rho=3 \mathrm{x} \mathrm{kg} / \mathrm{m}$. The moment of inertia (in $\mathrm{kg} \mathrm{m}^{2}$) of the rod about a perpendicular-axis passing through the tip of the rod (at $x=0$)
(a) 10
(b) 12
(c) 14
(d) 16

Q19. For a forward biased p-n junction diode, which one of the following energy-band diagrams is $\operatorname{correct}$ (ε_{F} is the Fermi energy)

Conduction Band
(a) Electron $\begin{aligned} \text { Energy } & \left.\begin{array}{ll}p \text {-type } & n \text {-type } \\ \varepsilon_{F(p)} & \\ & \end{array}\right]\end{aligned}$

Valence Band
Conduction Band
(c)

Conduction Band

Conduction Band

Q20. The amount of work done to increases the speed of an electron nom c/3 to $2 c / 3$ is ($c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and rest mass of electron is $0 . .511 \mathrm{MeV}$)
(a) 56.50 keV
(b) 143.58 keV
(c) 168.20 keV
(d) 511.00 keV

Q21. The location of Cs^{+}and Cl^{-}ions inside the unit cell of cacl crystal is shown in the figure. The Bravais lattice of CaCl is

(a) Simple cubic
(b) Body centred orthorhomble
(c) Face centred cubic
(d) Base centred orthorhombic

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics \# 8920759559, 9971585002 | www.pravegaa.com

Q22. A γ-ray photon emitted from a ${ }^{137} \mathrm{Cs}$ source collides with an electron at rest. If the Compton shift of the photon is $3.25 \times 10^{-13} \mathrm{~m}$, then the scattering angle is closets to (Planck's constant $h=6.626 \times 10^{-34} \mathrm{Js}$, electron mass $m_{\theta}=9.109 \times 10^{-31} \mathrm{~kg}$ and velocity of light in free space $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
(a) 45°
(b) 60°
(c) 30°
(d) 90°

Q23. During free expansion of an ideal gas under adiabatic condition, the internal energy of the gas.
(a) Decreases
(b) Initially decreases and then increases
(c) Increases
(d) Remains constant

Q24. In the given phase diagram for a pure substance regions I, II, III, IV, respectively represent
(a) Vapour, Gas, Solid, Liquid
(b) Gas, Vapour, Liquid, solid
(c) Gas, Liquid, Vapour, solid
(d) Vapour, Gas, Liquid, Solid

Q25. Light of wavelength λ (in free space) propagates through a dispersive medium with refractive index $n(\lambda)=1.5+0.6 \lambda$. The group velocity of a wave travelling inside this medium in units of $10^{8} \mathrm{~m} / \mathrm{s}$ is
(a) 1.5
(b) 2.0
(c) 3.0
(d) 4.0

Q26. The maximum number of intensity minima that can be observed I the Fraunhofer diffraction pattern of a single slit (width $10 \mu \mathrm{~m}$) illuminated by a laser bean (wavelength $0.630 \mu \mathrm{~m}$) will be
(a) 4
(b) 7
(c) 12
(d) 15

Q27. During the charging of a capacitor C in a series RC circuit, the typical variations in the magnitude of the charge $q(t)$ deposited on one of the capacitor plates, and the current $i(t)$ in the circuit, respectively are best represented by

(a) Figure I and figure II

Fig.II

(b) Figure I and Figure IV
(c) Figure III and figure II
(d) Figure III and figure IV

Pravegaal Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

Q28. Which one of the following is an impossible magnetic field \vec{B} ?
(a) $\vec{B}=3 x^{2} z^{2} \hat{x}-2 x z^{3} \hat{z}$
(b) $\vec{B}=-2 x y \hat{x}+y z^{2} \hat{y}+\left(2 y z-\frac{z^{3}}{3}\right) \hat{z}$
(c) $\vec{B}=(x z+4 y) \hat{x}-y x^{3} \hat{y}+\left(x^{3} z-\frac{z^{2}}{2}\right) \hat{z}$
(d) $\vec{B}=-6 x z \hat{x}+3 y z^{2} \hat{y}$

Q29. If the motion of a particle is described by $x=5 \cos (8 \pi t), y=5 \sin (8 \pi t)$ and $z=5 t$, then the trajectory of the particle is
(a) Circular
(b) Elliptical
(c) Helical
(d) Spiral

Q30. A ball of mass m is falling freely under gravity through a viscous medium in which the drag force is proportional to the instantaneous velocity v of the ball. Neglecting the buoyancy force of the medium, which one of the following figures best describes the variation of v as a function of time t ?
(a)

(b)

(c)

(d)

Pravegae Education

SECTION - B

MULTIPLE SELECT QUESTIONS (MSQ)

Q31. - Q40. Carry two marks each.

Q31. The relation between the nuclear radius (R) and the mass number (A), given by $R=1.2 A^{1 / 3} \mathrm{fm}$, implies that
(a) The central density of nuclei is independent of A
(b) The volume energy per nucleon is a constant
(c) The attractive part of the nuclear force has a long range
(d) The nuclear force is charge dependent

Q32. Consider an object moving with a velocity \vec{v} in a frame which rotates with a constant angular velocity $\vec{\omega}$. The Coriolis force experienced by the object is
(a) Along \vec{v}
(b) Along $\vec{\omega}$
(c) Perpendicular to both \vec{v} and $\vec{\omega}$
(d) always directed towards the axis of rotation

Q33. The gradient of scalar field $S(x, y, z)$ has the following characteristic(s)
(a) Line integral of a gradient is path-independent
(b) Closed line integral of a gradient is zero
(c) Gradient of S is a measure of the maximum rate of change in the field S
(d) Gradient of S is a scalar quantity

Q34. A thermodynamic system is described by the P, V, T coordinates. Choose the valid expression(s) for the system.
(a) $\left(\frac{\partial P}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{P}=-\left(\frac{\partial P}{\partial T}\right)_{V}$
(b) $\left(\frac{\partial P}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{P}=\left(\frac{\partial P}{\partial T}\right)_{V}$
(c) $\left(\frac{\partial V}{\partial T}\right)_{P}\left(\frac{\partial T}{\partial P}\right)_{V}=-\left(\frac{\partial V}{\partial P}\right)_{T}$
(d) $\left(\frac{\partial V}{\partial T}\right)_{P}\left(\frac{\partial T}{\partial P}\right)_{V}=\left(\frac{\partial V}{\partial P}\right)_{T}$

Pravegaal Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics \# 8920759559, 9971585002 | www.pravegaa.com

Q35. Which of the following statement(s) is/are true?
(a) Newton's laws of motion and Maxwell's equations are both invariant under Lorentz transformations
(b) Newton's laws of motion and Maxwell's equations are both invariant under Galilean transformations
(c) Newton's laws of motion are invariant under Galilean transformations and Maxwell's equations are invariant under Lorentz transformations
(d) Newton's laws of motion are invariant under Lorenz transformations and Maxwell's equations are invariant under Galilean transformations

Q36. For an under damped harmonic oscillator with velocity $v(t)$
(a) Rate of energy dissipation varies linearly with $v(t)$
(b) Rate of energy dissipation varies as square of $v(t)$
(c) The reduction in the oscillator frequency, compared to the undamped case, is independent of $v(t)$
(d) For weak damping, the amplitude decays exponentially to zero

Q37. Out of the following statements, choose the correct option(s) about a perfect conductor.
(a) The conductor has an equipotential surface
(b) Net charge, if any, resides only on the surface of conductor
(c) Electric field cannot exist inside the conductor
(d) Just outside the conductor, the electric field is always perpendicular to its surface

Q38. In the X-ray diffraction pattern recorded for a simple cubic solid (lattice) parameter $a=1 \AA$) using X-rays of wavelength $1 \AA$, the first order diffraction peak(s) would appear for the
(a) (100) planes
(b) (112) planes
(c) (210) planes
(d) (220) planes

Q39. Consider a classical particle subjected to an attractive inverse-square force field. The total energy of the particle is E and the eccentricity is ε. The particle will follow a parabolic orbit if
(a) $E>0$ and $\varepsilon=1$
(b) $E<0$ and $\varepsilon<1$
(c) $E=0$ and $\varepsilon=1$
(d) $E<0$ and $\varepsilon=1$

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics \# 8920759559, 9971585002 | www.pravegaa.com

Q40. An atomic nucleus X with half-life T_{X} decays to a nucleus Y, which has half-life T_{Y}. The condition (s) for secular equilibrium is (are)
(a) $T_{X} \simeq T_{Y}$
(b) $T_{X}<T_{Y}$
(c) $T_{X} \ll T_{Y}$
(d) $T_{x} \gg T_{Y}$

SECTION - C

NUMERICAL ANSWER TYPE (NAT)

Q41. - Q50. Carry one mark each.

Q41. In a typical human body, the amount of radioactive ${ }^{40} \mathrm{~K}$ is 3.24×10^{-5} percent of its mass. The activity due to ${ }^{40} \mathrm{~K}$ in a human body of mass 70 kg is \qquad kBq .
(Round off to 2 decimal places)
(Half-life of ${ }^{40} \mathrm{~K}=3.942 \times 10^{16} \mathrm{~S}$, Avogadro's number $N_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Q42. Sodium (Na) exhibits body-centred cubic (BCC) crystal structure with atomic radius 0.186 nm . The lattice parameter of Na unit cell is \qquad $n m$.
Q43. Light of wavelength 680 nm is incident normally on a diffraction grating having 4000 lines $/ \mathrm{cm}$. The diffraction angle (in degrees) corresponding to the third-order maximum is \qquad (Round off to 2 decimal places)

Q44. Two gases having molecular diameters D_{1} and D_{2} and mean free paths λ_{1} and λ_{2}, respectively, are trapped separately in identical containers. If $D_{2}=2 D_{1}$, then $\frac{\lambda_{1}}{\lambda_{2}}=$ \qquad .
(Assume there is no change in other thermodynamic parameters)
Q45. An object of 2 cm height is placed at a distance of 30 cm in front of a concave mirror with radius of curvature 40 cm . The height of the image is \qquad cm.

Q46. The flux of the function $\vec{F}=\left(y^{2}\right) \hat{x}+\left(3 x y-z^{2}\right) \hat{y}+(4 y z) \hat{z}$ passing through the surface $A B C D$ along \hat{n} is \qquad (Round off to 2 decimal places)

Pravegaed Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
\# 8920759559, 9971585002 | www.pravegaa.com
Q47. The electrostatic energy (in units of $\frac{1}{4 \pi \varepsilon_{0}} J$) of a uniformly charged spherical shell of total charge $5 C$ and radius $4 m$ is \qquad . (Round off to 3 decimal places)

Q48. An infinitely long very thin straight wire carries uniform line charge density $8 \pi \times 10^{-2} \mathrm{C} / \mathrm{m}$. The magnitude of electric displacement vector at a point located 20 mm away from the axis of the wire is \qquad C / m^{2}.
Q49. The $7^{\text {th }}$ bright fringe in the Young's double slit experiment using a light of wavelength 550 nm shifts to the central maxima after covering the two slits with two sheets of different refractive indices n_{1} and n_{2} but having same thickness $6 \mu m$. The value of $\left|n_{1}-n_{2}\right|$ is \qquad .
(Round off to 2 decimal places)
Q50. For the input voltage $V_{1}(200 \mathrm{mV}) \sin (400 t)$, the amplitude of the output voltage $\left(V_{0}\right)$ of the given OPAM P circuit is \qquad V. (Round off to 2 decimal places)

Q51. - Q60. Carry one mark each.

Q51. The value of emitter current in the given circuit is \qquad μA. (Round off to 1 decimal places)

Pravegaad Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
\# 8920759559, 9971585002 | www.pravegaa.com
Q52. The value of $\left|\int_{0}^{3+i}(\bar{z})^{2} d z\right|^{2}$, along the line $3 y=x$, where $z=x+i y$ is \qquad (Round off to 1 decimal places)

Q53. If the wavelength of $K \alpha z \quad X$-ray line of an element is $1.544 \AA^{\circ}$. Then the atomic number (Z) of the element is \qquad
(Rydberg constant $R=1.097 \times 10^{7} \mathrm{~m}^{-1}$ and velocity of light $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
Q54. A proton is confined within a nucleus of size $10^{-13} \mathrm{~cm}$. The uncertainty in its velocity is
\qquad $\times 10^{8} \mathrm{~m} / \mathrm{s}$.
(Round off to 2 decimal places)
(Planck's constant $h=6.626 \times 10^{-34} \mathrm{~J}$ and proton mass $m_{P}=1.672 \times 10^{-27} \mathrm{~kg}$)
Q55. Given the wave function of a particle $\psi(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{\pi}{L} x\right) 0<x<L$ and 0 elsewhere the probability of finding the particle between $x=0$ and $x=\frac{L}{2}$ is \qquad -
(Round off to 1 decimal places)
Q56. The Zener current I_{z} for the given circuit is \qquad $m A$.

Q57. If the diameter of the Earth is increased by 4% without changing the mass, then the length of the day is \qquad hours.
(Take the length of the day before the increment as 24 hours. Assume the Earth to be a sphere with uniform density) (Round off to 2 decimal places)
Q58. A di-atomic gas undergoes adiabatic expansion against the piston of a cylinder. As a result, the temperature of the gas drops from 1150 K to 400 K . The number of moles of the gas required to obtain 2300 J of work from the expansion is \qquad . (The gas constant $R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} K^{-1}$.) \quad (Round off to 2 decimal places)

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
\# 8920759559, 9971585002 | www.pravegaa.com
Q59. The decimal equivalent of the binary number 110.101 is \qquad .

Q60. A surface current $\vec{K}=100 \hat{x} \mathrm{~A} / \mathrm{m}$ flows on the surface $z=0$, which separates two media with magnetic permeabilities μ_{1} and μ_{2} as shown in the figure. If the magnetic field in the region 1 is $\vec{B}_{1}=4 \hat{x}-6 \hat{y}+2 \hat{z} m T$, then the magnitude of the normal component of \vec{B}_{2} will be
\qquad $m T$
$z>0$

