CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics \# 8920759559, 9971585002 | www.pravegaa.com

JEST 2015

PART-A: 3 M ARK QUESTIONS

Q1. A circular loop of radius R, carries a uniform line charge density λ. The electric field, calculated at a distance z directly above the center of the loop, is maximum if z is equal to,
(a) $\frac{R}{\sqrt{3}}$
(b) $\frac{R}{\sqrt{2}}$
(c) $\frac{R}{2}$
(d) $2 R$

Q2. Consider two point charges q and λq located at the points, $x=a$ and $x=\mu a$, respectively. Assuming that the sum of the two charges is constant, what is the value of λ for which the magnitude of the electrostatic force is maximum?
(a) μ
(b) 1
(c) $\frac{1}{\mu}$
(d) $1+\mu$

Q3. Consider a harmonic oscillator in the state $|\psi\rangle=e^{-\frac{|\alpha|^{2}}{2}} e^{\alpha \alpha^{+}}|0\rangle$, where $|0\rangle$ is the ground state, a^{+} is the raising operator and α is a complex number. What is the probability that the harmonic oscillator is in the n-th eigenstate $|n\rangle$?
(a) $e^{-\left|\alpha^{2}\right|} \frac{|\alpha|^{2 n}}{n!}$
(b) $e^{-\frac{\left.|a|^{2}|a|\right|^{n}}{\sqrt{n}!}}$
(c) $e^{-|\alpha|^{2}} \frac{|\alpha|^{n}}{n!}$
(d) $e^{-\frac{|\alpha|^{2}}{2}} \frac{|\alpha|^{2 n}}{n!}$

Q4. The distance of a star from the Earth is 4.25 light years, as measured from the Earth. A space ship travels from Earth to the star at a constant velocity in 4.25 years, according to the clock on the ship. The speed of the space ship in units of the speed of light is,
(a) $\frac{1}{2}$
(b) $\frac{1}{\sqrt{2}}$
(c) $\frac{2}{3}$
(d) $\frac{1}{\sqrt{3}}$

Q5. Given an analytic function $f(z)=\phi(x, y)+i \psi(x, y)$, where $\phi(x, y)=x^{2}+4 x-y^{2}+2 y$. If C is a constant, which of the following relations is true?
(a) $\psi(x, y)=x^{2} y+4 y+C$
(b) $\psi(x, y)=2 x y-2 x+C$
(c) $\psi(x . y)=2 x y+4 y-2 x+C$
(d) $\psi(x, y)=x^{2} y-2 x+C$

Pravegaal Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
\# 8920759559, 9971585002 | www.pravegaa.com
Q6. For a system in thermal equilibrium with a heat bath at temperature T, which one of the following equalities is correct? $\left(\beta=\frac{1}{k_{B} T}\right.$)
(a) $\frac{\partial}{\partial \beta}\langle E\rangle=\langle E\rangle^{2}-\left\langle E^{2}\right\rangle$
(b) $\frac{\partial}{\partial \beta}\langle E\rangle=\left\langle E^{2}\right\rangle-\langle E\rangle^{2}$
(c) $\frac{\partial}{\partial \beta}\langle E\rangle=\left\langle E^{2}\right\rangle+\langle E\rangle^{2}$
(d) $\frac{\partial}{\partial \beta}\langle E\rangle=-\left(\left\langle E^{2}\right\rangle+\langle E\rangle^{2}\right)$

Q7. A classical particle with total energy E moves under the influence of a potential $V(x, y)=3 x^{3}+2 x^{2} y+2 x y^{2}+y^{3}$. The average potential energy, calculated over a long time is equal to,
(a) $\frac{2 E}{3}$
(b) $\frac{E}{3}$
(c) $\frac{E}{5}$
(d) $\frac{2 E}{5}$

Q8. If two ideal dice are rolled once, what is the probability of getting at least one ' 6 '?
(a) $\frac{11}{36}$
(b) $\frac{1}{36}$
(c) $\frac{10}{36}$
(d) $\frac{5}{36}$

Q9. What is the maximum number of extrema of the function $f(x)=P_{k}(x) e^{-\left(\frac{x^{4}}{4}+\frac{x^{2}}{2}\right)}$ where $x \in(-\infty, \infty)$ and $P_{k}(x)$ is an arbitrary polynomial of degree k ?
(a) $k+2$
(b) $k+6$
(c) $k+3$
(d) k

Q10, A chain of mass M and length L is suspended vertically with its lower end touching a weighing scale. The chain is released and falls freely onto the scale. Neglecting the size of the individual links, what is the reading of the scale when a length x of the chain has fallen?
(a) $\frac{M g x}{L}$
(b) $\frac{2 M g x}{L}$
(c) $\frac{3 M g x}{L}$
(d) $\frac{4 M g x}{L}$

Q11. For non-interacting Fermions in d-dimensions, the density of states $D(E)$ varies as $E^{\left(\frac{d}{2}-1\right)}$. The Fermi energy E_{F} of an N particle system in 3-, 2- and 1-dimensions will scale respectively as,
(a) $N^{2}, N^{2 / 3}, N$
(b) $N, N^{2 / 3}, N^{2}$
(c) $N, N^{2}, N^{2 / 3}$
(d) $N^{2 / 3}, N, N^{2}$

Pravegaal Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics \# 8920759559, 9971585002 | www.pravegaa.com

Q12. A particle of mass m moves in 1 -dimensional potential $V(x)$, which vanishes at infinity. The exact ground state eigenfunction is $\psi(x)=A$ such (λx) where A and λ are constants. The ground state energy eigenvalue of this system is,
(a) $E=\frac{\hbar^{2} \lambda^{2}}{m}$
(b) $E=-\frac{\hbar^{2} \lambda^{2}}{m}$
(c) $E=-\frac{\hbar^{2} \lambda^{2}}{2 m}$
(d) $E=\frac{\hbar^{2} \lambda^{2}}{2 m}$

Q13. Consider a spin $-\frac{1}{2}$ particle characterized by the Hamiltonian $H=\omega S_{z}$. Under a perturbation $H^{\prime}=g S_{x}$, the second order correction to the ground state energy is given by,
(a) $-\frac{g^{2}}{4 \omega}$
(b) $\frac{g^{2}}{4 \omega}$
(c) $-\frac{g^{2}}{2 \omega}$
(d) $\frac{g^{2}}{2 \omega}$

Q14. Given that ψ_{1} and ψ_{2} are eigenstates of a Hamiltonian with eigenvalues E_{1} and E_{2} respectively, what is the energy uncertainty in the state $\left(\psi_{1}+\psi_{2}\right)$?
(a) $-\sqrt{E_{1} E_{2}}$
(b) $\frac{1}{2}\left|E_{1}-E_{2}\right|$
(c) $\frac{1}{2}\left(E_{1}+E_{2}\right)$
(d) $\frac{1}{\sqrt{2}}\left|E_{2}-E_{1}\right|$

Q15. An ideal gas is compressed adiabatically from an initial volume V to a final volume αV and a work W is done on the system in doing so. The final pressure of the gas will be $\left(\gamma=\frac{C_{P}}{C_{V}}\right)$
(a) $\frac{W}{V^{\gamma}} \frac{1-\gamma}{\alpha-\alpha^{\gamma}}$
(b) $\frac{W}{V^{\gamma}} \frac{\gamma-1}{\alpha-\alpha^{\gamma}}$
(c) $\frac{W}{V} \frac{1-\gamma}{\alpha-\alpha^{\gamma}}$
(d) $\frac{W}{V} \frac{\gamma-1}{\alpha-\alpha^{\gamma}}$

Q16. What is the area of the irreducible Brillouin zone of the crystal structure as given in the figure?
(a) $\frac{2 \pi^{2}}{\sqrt{3} A^{2}}$
(b) $\frac{\sqrt{3} \pi^{2}}{2 A^{2}}$
(c) $\frac{2 \pi^{2}}{A^{2}}$
(d) $\frac{\pi^{2}}{\sqrt{3} A^{2}}$

$|A|=|B|=A$

Pravegaad Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
\# 8920759559, 9971585002 | www.pravegaa.com
Q17. A particle in thermal equilibrium has only 3 possible states with energies $-\varepsilon, 0, \varepsilon$. If the system is maintained at a temperature $T \gg \frac{\varepsilon}{k_{B}}$, then the average energy of the particle can be approximated to,
(a) $\frac{2 \varepsilon^{2}}{3 k_{B} T}$
(b) $\frac{-2 \varepsilon^{2}}{3 k_{B} T}$
(c) $\frac{-\varepsilon^{2}}{k_{B} T}$
(d) 0

Q18. What is the voltage at the output of the following operational amplifier circuit. [See in the figure]?
(a) 1 V
(b) 1 mV
(c) $1 \mu V$
(d) 1 nV

Q19. The energy difference between the $3 p$ and $3 s$ levels in $N a$ is 2.1 eV . Spin-orbit coupling splits the $3 p$ level, resulting in two emission lines differing by $6 \AA^{\circ}$. The splitting of the $3 p$ level is approximately,
(a) 2 eV
(b) 0.2 eV
(c) 0.02 eV
(d) 2 meV

Q20. For a 2 - dimensional honeycomb lattice as shown in the figure 3, the first Bragg spot occurs for the grazing angle θ_{1} while sweeping the angle from 0°. The next Bragg spot is obtained at θ_{2} given by
(a) $\sin ^{-1}\left(3 \sin \theta_{1}\right)$
(b) $\sin ^{-1}\left(\frac{3}{2} \sin \theta_{1}\right)$
(c) $\sin ^{-1}\left(\frac{\sqrt{3}}{2} \sin \theta_{1}\right)$

(d) $\sin ^{-1}\left(\sqrt{3} \sin \theta_{1}\right)$

Pravegaal Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics \# 8920759559, 9971585002 | www.pravegaa.com

Q21. A spherical shell of inner and outer radii a and b, respectively, is made of a dielectric material with frozen polarization $\vec{P}(r)=\frac{k}{r} \hat{r}$ where k is a constant and r is the distance from the its centre. The electric field in the region $a<r<b$ is,
(a) $\vec{E}=\frac{k}{\varepsilon_{0} r} \hat{r}$
(b) $\vec{E}=-\frac{k}{\varepsilon_{0} r} \hat{r}$
(c) $\vec{E}=0$
(d) $\vec{E}=\frac{k}{\varepsilon_{0} r^{2}} \hat{r}$

Q22. The electrostatic potential due to a charge distribution is given by $V(r)=A \frac{e^{-\lambda r}}{r}$ where A and λ are constants The total charge enclosed within a sphere of radius $\frac{1}{\lambda}$, with its origin at $r=0$ is given by,
(a) $\frac{8 \pi \varepsilon_{0} A}{e}$
(b) $\frac{4 \pi \varepsilon_{0} A}{e}$
(c) $\frac{\pi \varepsilon_{0} A}{e}$
(d) 0

Q23. A bike stuntman rides inside a well of frictionless surface given by $z=a\left(x^{2}+y^{2}\right)$ under the action of gravity acting in the negative z direction. $\vec{g}=-g \hat{z}$ What speed should he maintain to be able to ride at a constant height z_{0} without falling down?
(a) $\sqrt{g z_{0}}$
(b) $\sqrt{3 g z_{0}}$
(c) $\sqrt{2 g z_{0}}$
(d) The biker will not be able to maintain a constant height, irrespective of speed.

Q24. A particle of mass m is confined in a potential well given by $\mathrm{V}(\mathrm{x})=0$ for $\frac{-L}{2}<x<\frac{L}{2} \mathrm{~L} / 2$ and $V(x)=\infty$ elsewhere. A perturbing potential $H^{\prime}(x)=a x$ has been applied to the system. Let the first and second order corrections to the ground state be $E_{0}^{(1)}$ and $E_{0}^{(2)}$, respectively. Which one of the following statements is correct?
(a) $E_{0}^{(1)}<0$ and $E_{0}^{(2)}>0$
(b) $E_{0}^{(1)}=0$ and $E_{0}^{(2)}>0$
(c) $E_{0}^{(1)}>0$ andE $E_{0}^{(2)}<0$
(d) $E_{0}^{(1)}=0$ and $\mathrm{E}_{0}^{(2)}<0$

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
\# 8920759559, 9971585002 | www.pravegaa.com
Q25. The Bernoulli polynominals $B_{n}(s)$ are defined by, $\frac{x e^{x s}}{e^{x}-1}=\sum B_{n}(s) \frac{x^{n}}{n!}$. Which one of the following relations is true?
(a) $\frac{x e^{x(1-s)}}{e^{x}-1}=\sum B_{n}(s) \frac{x^{n}}{(n+1)!}$
(b) $\frac{x e^{x(1-s)}}{e^{x}-1}=\sum B_{n}(s)(-1) \frac{x^{n}}{(n+1)!}$
(c) $\frac{x e^{x(1-s)}}{e^{x}-1}=\sum B_{n}(-s)(-1)^{n} \frac{x^{n}}{n!}$
(d) $\frac{x e^{x(1-s)}}{e^{x}-1}=\sum B_{n}(s)(-1)^{n} \frac{x^{n}}{n!}$

PART-B: 1 M ARK QUESTIONS

Q26. The skin depth of a metal is dependent on the conductivity (σ) of the metal and the angular frequency ω of the incident field. For a metal of high conductivity, which of the following relations is correct? (Assume that $\sigma \gg \in \omega$, where \in is the electrical permittivity of the medium.)
(a) $d \propto \sqrt{\frac{\sigma}{\omega}}$
(b) $d \propto \sqrt{\frac{1}{\sigma \omega}}$
(c) $d \propto \sqrt{\sigma \omega}$
(d) $d \propto \sqrt{\frac{\omega}{\sigma}}$

Q27. The blackbody at a temperature of 6000 K emits a radiation whose intensity spectrum peaks at 600 nm . If the temperature is reduced to 300 K , the spectrum will peak at,
(a) $120 \mu \mathrm{~m}$
(b) $12 \mu \mathrm{~m}$
(c) 12 mm
(d) 120 mm

Q28. The wavelength of red helium-neon laser in air is $6328 \AA^{\circ}$. What happens to its frequency in glass that has a refractive index of 1.50 ?
(a) Increases by a factor of 3
(b) Decreases by a factor of 1.5
(c) Remains the same
(d) Decreases by a factor of 0.5

Q29. Which of the following excited states of a hydrogen atom has the highest lifetime?
(a) $2 p$
(b) $2 s$
(c) $3 s$
(d) $3 p$

Q30. The Lagrangian of a particle is given by $L=\dot{q}^{2}-q \dot{q}$. Which of the following statements is true?
(a) This is a free particle
(b) The particle is experiencing velocity dependent damping
(c) The particle is executing simple harmonic motion
(d) The particle is under constant acceleration.

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics \# 8920759559, 9971585002 | www.pravegaa.com

Q31. A particle moving under the influence of a potential $V(r)=\frac{k r^{2}}{2}$ has a wavefunction $\psi(r, t)$. If the wavefunction changes to $\psi(\alpha r, t)$, the ratio of the average final kinetic energy to the initial kinetic energy will be,
(a) $\frac{1}{\alpha^{2}}$
(b) α
(c) $\frac{1}{\alpha}$
(d) α^{2}

Q32. How is your weight affected if the Earth suddenly doubles in radius, mass remaining the same?
(a) Increases by a factor of 4
(b) Increases by a factor of 2
(c) Decreases by a factor of 4
(d) Decreases by a factor of 2

Q33. The approximate force exerted on a perfectly reflecting mirror by an incident laser beam of power 10 mW at normal incidence is
(a) $10^{-13} \mathrm{~N}$
(b) $10^{-11} \mathrm{~N}$
(c) $10^{-9} \mathrm{~N}$
(d) $10^{-15} \mathrm{~N}$

Q34. Which of the following statements is true for the energies of the terms of the carbon atom in the ground state electronic configuration $1 s^{2} 2 s^{2} 2 p^{2}$?
(a) ${ }^{3} P<^{1} D<^{1} S$
(b) ${ }^{3} P<{ }^{1} S<{ }^{1} D$
(c) ${ }^{3} P<{ }^{1} F<^{1} S$
(d) ${ }^{3} P<^{1} F<^{1} D$

Q35. The entropy-temperature diagram of two Carnot engines, A and B, are shown in the figure 4. The efficiencies of the engines are η_{A} and η_{B} respectively. Which one of the following equalities is correct?
(a) $\eta_{A}=\frac{\eta_{B}}{2}$
(b) $\eta_{A}=\eta_{B}$
(c) $\eta_{A}=3 \eta_{B}$
(d) $\eta_{A}=2 \eta_{B}$

Q36. The reference voltage of an analog to digital converter is 1 V . The smallest voltage step that the converter can record using a 12 -bit converter is,
(a) 0.24 V
(b) 0.24 mV
(c) $0.24 \mu \mathrm{~V}$
(d) $0.24 n \mathrm{~V}$

Pravegaed Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics \# 8920759559, 9971585002 | www.pravegaa.com

Q37. A spring of force constant k is stretched by x. It takes twice as much work to stretch a second spring by $\frac{x}{2}$. The force constant of the second spring is,
(a) k
(b) $2 k$
(c) $4 k$
(d) $8 k$

Q38. Which of the following expressions represents an electric field due to a time varying magnetic field?
(a) $K(x \hat{x}+y \hat{y}+z \hat{z})$
(b) $K(x \hat{x}+y \hat{y}-z \hat{z})$
(c) $K(x \hat{x}-y \hat{y})$
(d) $K(y \hat{y}-x \hat{y}+2 z \hat{z})$

Q39. In Millikan's oil drop experiment the electronic charge e could be written as $k \eta^{1.5}$ where κ is a function of all experimental parameters with negligible error. If the viscosity of air η is taken to be 0.4% lower than the actual value, what would be the error in the calculated value of e ?
(a) 1.5%
(b) 0.7%
(c) 0.6%
(d) 0.4%

Q40. Given the tight binding dispersion relation $E(k)=E_{0}+A \sin ^{2}\left(\frac{k a}{2}\right)$, where E_{0} and A are constants and a is the lattice parameter. What is the group velocity of an electron at the second Brillouin zone boundary?
(a) 0
(b) $\frac{a}{h}$
(c) $\frac{2 a}{h}$
(d) $\frac{a}{2 h}$

Q41. The total number of Na^{+}and Cl^{-}ions per unit cell of NaCl is,
(a) 2
(b) 4
(c) 6
(d) 8

Q42. if a Hamiltonian H is given as $H=|0\rangle\langle 0|-|1\rangle\langle 1|+i(|0\rangle\langle 1|-|1\rangle\langle 0|)$, where $|0\rangle$ and $|1\rangle$ are orthonormal states, the eigenvalues of H are
(a) ± 1
(b) $\pm i$
(c) $\pm \sqrt{2}$
(d) $\pm i \sqrt{2}$

Q43. The stable nucleus that has $\frac{1}{3}$ the radius of ${ }^{189} \mathrm{Os}$ nucleus is,
(a) Li
(b) ${ }^{16} \mathrm{O}$
(c) ${ }^{4} \mathrm{He}$
(d) ${ }^{14} N$

Q44. A charged particle is released at time $t=0$, from the origin in the presence of uniform static electric and magnetic fields given by $E=E_{0} \hat{y}$ and $B=B_{0} \hat{z}$ respectively. Which of the following statements is true for $t>0$?
(a)The particle moves along the x-axis.
(b) The particle moves in a circular orbit.
(c) The particle moves in the (x, y) plane.
(d) particle moves in the (y, z) plane

Pravegaed Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
\# 8920759559, 9971585002 | www.pravegaa.com
Q45. Consider the differential equation $G^{\prime}(x)+k G(x)=\delta(x)$; where k is a constant. Which following statements is true?
(a) Both $G(x)$ and $G^{\prime}(x)$ are continuous at $x=0$
(b) $G(x)$ is continuous at $x=0$ but $G^{\prime}(x)$ is not
(c) $G(x)$ is discontinuous at $x=0$
(d) The continuity properties of $G(x)$ and $G^{\prime}(x)$ at $x=0$ depends on the value of k

Q46. The sum $\sum_{m=1}^{99} \frac{1}{\sqrt{m+1}+\sqrt{m}}$ is equal to
(a) 9
(b) $\sqrt{99}-1$
(c) $\frac{1}{(\sqrt{99}-1)}$
(d) 11

Q47. Let λ be the wavelength of incident light. The diffraction pattern of a circular aperture of dimension r_{0} will transform from Fresnel to Fraunhofer regime if the screen distance z is,
(a) $z \gg \frac{r_{0}^{2}}{\lambda}$
(b) $z \gg \frac{\lambda^{2}}{r_{0}}$
(c) $z \ll \frac{\lambda^{2}}{r_{0}}$
(d) $z \ll \frac{r_{0}^{2}}{\lambda}$

Q48. For the logic circuit shown in figure 5, the required input condition (A, B, C) to make the output $(X)=1$ is,
(a) 1,0,1
(b) $0,0,1$
(c) $1,1,1$
(d) $0,1,1$

Q49. The reaction $e^{+}+e^{-} \rightarrow \gamma$ is forbidden because,
(a) lepton number is not conserved
(b) linear momentum is not conserved
(c) angular momentum is not conserved
(d) charge is not conserved

Q50. Electrons of mass m in a thin, long wire at a temperature T follow a one-dimensional Maxwellian velocity distribution. The most probable speed of these electrons is,
(a) $\sqrt{\left(\frac{k T}{2 \pi m}\right)}$
(b) $\sqrt{\left(\frac{2 k T}{m}\right)}$
(c) 0
(d) $\sqrt{\left(\frac{8 k T}{\pi m}\right)}$

