## **JEST 2015**

## **PART-A: 3 MARK QUESTIONS**

| Q1. | A circular loop of radius $\it R$ , carries a uniform line charge density $\it \lambda$ . The electric field, calculated |
|-----|--------------------------------------------------------------------------------------------------------------------------|
|     | at a distance $z$ directly above the center of the loop, is maximum if $z$ is equal to,                                  |

(a)  $\frac{R}{\sqrt{3}}$  (b)  $\frac{R}{\sqrt{2}}$ 

(c)  $\frac{R}{2}$ 

(d) 2R

Q2. Consider two point charges q and  $\lambda q$  located at the points, x = a and  $x = \mu a$ , respectively. Assuming that the sum of the two charges is constant, what is the value of  $\lambda$  for which the magnitude of the electrostatic force is maximum?

(a)  $\mu$ 

(b) 1

(c)  $\frac{1}{u}$ 

(d)  $1 + \mu$ 

Consider a harmonic oscillator in the state  $|\psi\rangle = e^{-\frac{|\alpha|^2}{2}}e^{\alpha a^+}|0\rangle$ , where  $|0\rangle$  is the ground state,  $a^+$ Q3. is the raising operator and  $\alpha$  is a complex number. What is the probability that the harmonic oscillator is in the *n*-th eigenstate  $|n\rangle$ ?

(a)  $e^{-|\alpha^2|} \frac{|\alpha|^{2n}}{n!}$ 

(b)  $e^{-\frac{|a|^2}{2}\frac{|a|^n}{\sqrt{n!}}}$ 

(c)  $e^{-|\alpha|^2} \frac{|\alpha|^n}{\alpha!}$ 

(d)  $e^{-\frac{|\alpha|^2}{2}} \frac{|\alpha|^{2n}}{|\alpha|^{2n}}$ 

Q4. The distance of a star from the Earth is 4.25 light years, as measured from the Earth. A space ship travels from Earth to the star at a constant velocity in 4.25 years, according to the clock on the ship. The speed of the space ship in units of the speed of light is,

(a)  $\frac{1}{2}$ 

(b)  $\frac{1}{\sqrt{2}}$ 

(c)  $\frac{2}{3}$ 

Given an analytic function  $f(z) = \phi(x, y) + i\psi(x, y)$ , where  $\phi(x, y) = x^2 + 4x - y^2 + 2y$ . If C is a Q5. constant, which of the following relations is true?

(a)  $\psi(x, y) = x^2 y + 4 y + C$ 

(b)  $\psi(x, y) = 2xy - 2x + C$ 

(c)  $\psi(x,y) = 2xy + 4y - 2x + C$ 

(d)  $\psi(x, y) = x^2 y - 2x + C$ 

For a system in thermal equilibrium with a heat bath at temperature T, which one of the Q6. following equalities is correct? (  $\beta = \frac{1}{kT}$ )

(a) 
$$\frac{\partial}{\partial B} \langle E \rangle = \langle E \rangle^2 - \langle E^2 \rangle$$

(b) 
$$\frac{\partial}{\partial B} \langle E \rangle = \langle E^2 \rangle - \langle E \rangle^2$$

(c) 
$$\frac{\partial}{\partial B} \langle E \rangle = \langle E^2 \rangle + \langle E \rangle^2$$

(d) 
$$\frac{\partial}{\partial \beta} \langle E \rangle = -\left( \langle E^2 \rangle + \langle E \rangle^2 \right)$$

A classical particle with total energy E moves under the influence of a potential Q7.  $V(x, y) = 3x^3 + 2x^2y + 2xy^2 + y^3$ . The average potential energy, calculated over a long time is equal to,

(a) 
$$\frac{2E}{3}$$

(b) 
$$\frac{E}{3}$$
 (c)  $\frac{E}{5}$ 

(c) 
$$\frac{E}{5}$$

(d) 
$$\frac{2E}{5}$$

If two ideal dice are rolled once, what is the probability of getting at least one '6'? Q8.

(a) 
$$\frac{11}{36}$$

(b) 
$$\frac{1}{36}$$
 (c)  $\frac{10}{36}$  (d)  $\frac{5}{36}$ 

(c) 
$$\frac{10}{36}$$

(d) 
$$\frac{5}{36}$$

What is the maximum number of extrema of the function  $f(x) = P_k(x)e^{-\left(\frac{x^4}{4} + \frac{x^2}{2}\right)}$  where Q9.  $x \in (-\infty, \infty)$  and  $P_k(x)$  is an arbitrary polynomial of degree k?

(a) 
$$k + 2$$

(b) 
$$k + 6$$

(c) 
$$k + 3$$

A chain of mass M and length L is suspended vertically with its lower end touching a weighing Q10, scale. The chain is released and falls freely onto the scale. Neglecting the size of the individual links, what is the reading of the scale when a length x of the chain has fallen?

(a) 
$$\frac{Mgx}{L}$$

(b) 
$$\frac{2Mgx}{L}$$

(c) 
$$\frac{3Mgx}{L}$$

(b) 
$$\frac{2Mgx}{L}$$
 (c)  $\frac{3Mgx}{L}$  (d)  $\frac{4Mgx}{L}$ 

For non-interacting Fermions in d – dimensions, the density of states D(E) varies as  $E^{\left(\frac{a}{2}-1\right)}$ . Q11. The Fermi energy  $E_{\scriptscriptstyle F}$  of an N particle system in 3-, 2- and 1-dimensions will scale respectively as,

(a) 
$$N^2$$
,  $N^{2/3}$ ,  $N$ 

(b) 
$$N, N^{2/3}, N^2$$

(c) 
$$N, N^2, N^{2/3}$$

(d) 
$$N^{2/3}, N, N^2$$



A particle of mass m moves in 1-dimensional potential V(x), which vanishes at infinity. The Q12. exact ground state eigenfunction is  $\psi(x) = A$  such  $(\lambda x)$  where A and  $\lambda$  are constants. The ground state energy eigenvalue of this system is,

(a) 
$$E = \frac{\hbar^2 \lambda^2}{m}$$

(b) 
$$E = -\frac{\hbar^2 \lambda^2}{m}$$

(c) 
$$E = -\frac{\hbar^2 \lambda^2}{2m}$$

(d) 
$$E = \frac{\hbar^2 \lambda^2}{2m}$$

Consider a spin  $-\frac{1}{2}$  particle characterized by the Hamiltonian  $H = \omega S_z$ . Under a perturbation Q13.  $H' = gS_{x}$ , the second order correction to the ground state energy is given by,

(a) 
$$-\frac{g^2}{4\omega}$$

(b) 
$$\frac{g^2}{4\omega}$$

(b) 
$$\frac{g^2}{4\omega}$$
 (c)  $-\frac{g^2}{2\omega}$  (d)  $\frac{g^2}{2\omega}$ 

(d) 
$$\frac{g^2}{2\omega}$$

Given that  $\psi_1$  and  $\psi_2$  are eigenstates of a Hamiltonian with eigenvalues  $E_1$  and  $E_2$  respectively, Q14. what is the energy uncertainty in the state  $(\psi_1 + \psi_2)$ ?

(a) 
$$-\sqrt{E_1 E_2}$$

(b) 
$$\frac{1}{2} |E_1 - E_2|$$

(c) 
$$\frac{1}{2}(E_1 + E_2)$$

(b) 
$$\frac{1}{2}|E_1 - E_2|$$
 (c)  $\frac{1}{2}(E_1 + E_2)$  (d)  $\frac{1}{\sqrt{2}}|E_2 - E_1|$ 

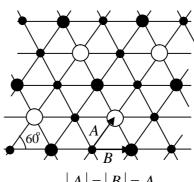
An ideal gas is compressed adiabatically from an initial volume V to a final volume  $\alpha V$  and a Q15. work W is done on the system in doing so. The final pressure of the gas will be  $\gamma = \frac{C_P}{C}$ 

(a) 
$$\frac{W}{V^{\gamma}} \frac{1-\gamma}{\alpha-\alpha^{\gamma}}$$
 (b)  $\frac{W}{V^{\gamma}} \frac{\gamma-1}{\alpha-\alpha^{\gamma}}$  (c)  $\frac{W}{V} \frac{1-\gamma}{\alpha-\alpha^{\gamma}}$  (d)  $\frac{W}{V} \frac{\gamma-1}{\alpha-\alpha^{\gamma}}$ 

(b) 
$$\frac{W}{V^{\gamma}} \frac{\gamma - 1}{\alpha - \alpha^{\gamma}}$$

(c) 
$$\frac{W}{V} \frac{1-\gamma}{\alpha-\alpha^{\gamma}}$$

(d) 
$$\frac{W}{V} \frac{\gamma - 1}{\alpha - \alpha^{\gamma}}$$


Q16. What is the area of the irreducible Brillouin zone of the crystal structure as given in the figure?

(a) 
$$\frac{2\pi^2}{\sqrt{3}A^2}$$

(b) 
$$\frac{\sqrt{3}\pi^2}{2A^2}$$

(c) 
$$\frac{2\pi^2}{A^2}$$

(d) 
$$\frac{\pi^2}{\sqrt{3}A^2}$$



$$|A| = |B| = A$$

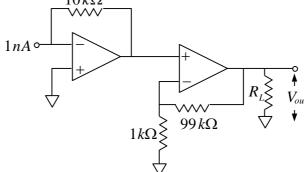


Q17. A particle in thermal equilibrium has only 3 possible states with energies  $-\varepsilon$ , 0,  $\varepsilon$ . If the system is maintained at a temperature  $T >> \frac{\mathcal{E}}{k_{\scriptscriptstyle R}}$  , then the average energy of the particle can be approximated to,

(a)  $\frac{2\varepsilon^2}{3k_BT}$ 

(b)  $\frac{-2\varepsilon^2}{3k_BT}$  (c)  $\frac{-\varepsilon^2}{k_BT}$ 

(d) 0


What is the voltage at the output of the following operational amplifier circuit. [See in the Q18. figure]?

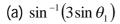
(a) 1V

(b) 1mV

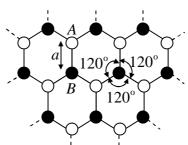
(c)  $1\mu V$ 

(d) 1nV




Q19. The energy difference between the 3p and 3s levels in Na is 2.1eV. Spin-orbit coupling splits the 3p level, resulting in two emission lines differing by  $6\mathring{A}$ . The splitting of the 3p level is approximately,

(a) 2eV


- (b)  $0.2\,eV$
- (c)  $0.02\,eV$
- (d) 2meV

4

Q20. For a 2 - dimensional honeycomb lattice as shown in the figure 3, the first Bragg spot occurs for the grazing angle  $\theta_1$  while sweeping the angle from  $0^{\circ}$ . The next Bragg spot is obtained at  $\theta_2$ given by



- (b)  $\sin^{-1}\left(\frac{3}{2}\sin\theta_1\right)$
- (c)  $\sin^{-1} \left( \frac{\sqrt{3}}{2} \sin \theta_1 \right)$
- (d)  $\sin^{-1}\left(\sqrt{3}\sin\theta_1\right)$



Q21. A spherical shell of inner and outer radii a and b, respectively, is made of a dielectric material with frozen polarization  $\vec{P}(r) = \frac{k}{r}\hat{r}$  where k is a constant and r is the distance from the its centre. The electric field in the region a < r < b is,

(a) 
$$\vec{E} = \frac{k}{\varepsilon_0 r} \hat{r}$$

(b) 
$$\vec{E} = -\frac{k}{\varepsilon_0 r} \hat{r}$$

(c) 
$$\vec{E} = 0$$

(a) 
$$\vec{E} = \frac{k}{\varepsilon_0 r} \hat{r}$$
 (b)  $\vec{E} = -\frac{k}{\varepsilon_0 r} \hat{r}$  (c)  $\vec{E} = 0$ 

The electrostatic potential due to a charge distribution is given by  $V(r) = A \frac{e^{-\lambda r}}{r}$  where A and Q22.  $\lambda$  are constants The total charge enclosed within a sphere of radius  $\frac{1}{\lambda}$ , with its origin at r=0is given by,

(a) 
$$\frac{8\pi\varepsilon_0 A}{e}$$
 (b)  $\frac{4\pi\varepsilon_0 A}{e}$  (c)  $\frac{\pi\varepsilon_0 A}{e}$ 

(b) 
$$\frac{4\pi\varepsilon_0 A}{e}$$

(c) 
$$\frac{\pi \varepsilon_0 A}{e}$$

A bike stuntman rides inside a well of frictionless surface given by  $z = a(x^2 + y^2)$  under the Q23. action of gravity acting in the negative z direction.  $\vec{g} = -g\hat{z}$  What speed should he maintain to be able to ride at a constant height  $z_0$  without falling down?

(a) 
$$\sqrt{gz_0}$$

(b) 
$$\sqrt{3gz_0}$$

(c) 
$$\sqrt{2gz_0}$$

(d) The biker will not be able to maintain a constant height, irrespective of speed.

A particle of mass m is confined in a potential well given by V(x) = 0 for  $\frac{-L}{2} < x < \frac{L}{2}$  L/2 and Q24.  $V(x) = \infty$  elsewhere. A perturbing potential H'(x) = ax has been applied to the system. Let the first and second order corrections to the ground state be  $E_0^{(1)}$  and  $E_0^{(2)}$ , respectively. Which one of the following statements is correct?

(a) 
$$E_0^{(1)} < 0$$
 and  $E_0^{(2)} > 0$ 

(b) 
$$E_0^{(1)} = 0$$
 and  $E_0^{(2)} > 0$ 

(c) 
$$E_0^{(1)} > 0$$
 and  $E_0^{(2)} < 0$ 

(d) 
$$E_0^{(1)} = 0$$
 and  $E_0^{(2)} < 0$ 

The Bernoulli polynominals  $B_n(s)$  are defined by,  $\frac{xe^{xs}}{e^x-1} = \sum B_n(s) \frac{x^n}{s!}$ . Which one of the Q25. following relations is true?

(a) 
$$\frac{xe^{x(1-s)}}{e^x-1} = \sum B_n(s) \frac{x^n}{(n+1)!}$$

(b) 
$$\frac{xe^{x(1-s)}}{e^x-1} = \sum B_n(s)(-1)\frac{x^n}{(n+1)!}$$

(c) 
$$\frac{xe^{x(1-s)}}{e^x-1} = \sum B_n(-s)(-1)^n \frac{x^n}{n!}$$
 (d)  $\frac{xe^{x(1-s)}}{e^x-1} = \sum B_n(s)(-1)^n \frac{x^n}{n!}$ 

(d) 
$$\frac{xe^{x(1-s)}}{e^x-1} = \sum B_n(s)(-1)^n \frac{x^n}{n!}$$

## **PART-B: 1 MARK QUESTIONS**

Q26. The skin depth of a metal is dependent on the conductivity  $(\sigma)$  of the metal and the angular frequency  $\omega$  of the incident field. For a metal of high conductivity, which of the following relations is correct? (Assume that  $\sigma >> \in \omega$ , where  $\in$  is the electrical permittivity of the medium.)

(a) 
$$d \propto \sqrt{\frac{\sigma}{\omega}}$$

(a) 
$$d \propto \sqrt{\frac{\sigma}{\omega}}$$
 (b)  $d \propto \sqrt{\frac{1}{\sigma\omega}}$  (c)  $d \propto \sqrt{\sigma\omega}$  (d)  $d \propto \sqrt{\frac{\omega}{\sigma}}$ 

(c) 
$$d \propto \sqrt{\sigma \omega}$$

(d) 
$$d \propto \sqrt{\frac{\omega}{\sigma}}$$

Q27. The blackbody at a temperature of 6000K emits a radiation whose intensity spectrum peaks at  $600 \, nm$ . If the temperature is reduced to  $300 \, K$ , the spectrum will peak at,

- (a)  $120 \mu m$
- (b)  $12 \mu m$
- (c) 12*mm*
- (d) 120mm

The wavelength of red helium-neon laser in air is  $6328 \mathring{A}$ . What happens to its frequency in Q28. glass that has a refractive index of 1.50?

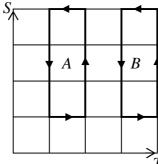
- (a) Increases by a factor of 3
- (b) Decreases by a factor of 1.5
- (c) Remains the same
- (d) Decreases by a factor of 0.5

Q29. Which of the following excited states of a hydrogen atom has the highest lifetime?

- (a) 2p
- (b) 2s
- (c) 3s
- (d) 3p

The Lagrangian of a particle is given by  $L = \dot{q}^2 - q\dot{q}$ . Which of the following statements is true? Q30.

- (a) This is a free particle
- (b) The particle is experiencing velocity dependent damping
- (c) The particle is executing simple harmonic motion
- (d) The particle is under constant acceleration.



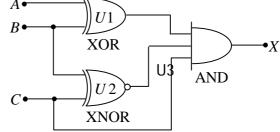

- Q31. A particle moving under the influence of a potential  $V(r) = \frac{kr^2}{2}$  has a wavefunction  $\psi(r,t)$ . If the wavefunction changes to  $\psi(\alpha r,t)$ , the ratio of the average final kinetic energy to the initial kinetic energy will be,
  - (a)  $\frac{1}{\alpha^2}$
- (b)  $\alpha$
- (c)  $\frac{1}{\alpha}$
- (d)  $\alpha^2$
- Q32. How is your weight affected if the Earth suddenly doubles in radius, mass remaining the same?
  - (a) Increases by a factor of 4
  - (b) Increases by a factor of 2
  - (c) Decreases by a factor of 4
  - (d) Decreases by a factor of 2
- Q33. The approximate force exerted on a perfectly reflecting mirror by an incident laser beam of power 10mW at normal incidence is
  - (a)  $10^{-13} N$
- (b)  $10^{-11} N$
- (c)  $10^{-9} N$
- (d)  $10^{-15} N$
- Q34. Which of the following statements is true for the energies of the terms of the carbon atom in the ground state electronic configuration  $1s^2 2s^2 2p^2$ ?
  - (a)  ${}^{3}P < {}^{1}D < {}^{1}S$

(b)  ${}^{3}P < {}^{1}S < {}^{1}D$ 

(c)  ${}^{3}P < {}^{1}F < {}^{1}S$ 

- (d)  ${}^{3}P < {}^{1}F < {}^{1}D$
- Q35. The entropy-temperature diagram of two Carnot engines, A and B, are shown in the figure 4. The efficiencies of the engines are  $\eta_A$  and  $\eta_B$  respectively. Which one of the following equalities is correct?
  - (a)  $\eta_A = \frac{\eta_B}{2}$
  - (b)  $\eta_A = \eta_B$
  - (c)  $\eta_A = 3\eta_B$
  - (d)  $\eta_A = 2\eta_B$




- Q36. The reference voltage of an analog to digital converter is 1V. The smallest voltage step that the converter can record using a 12-bit converter is,
  - (a) 0.24*V*
- (b)  $0.24 \, mV$
- (c)  $0.24 \mu V$
- (d)  $0.24 \, nV$



| Q37.                                                                                                            | A spring of force constant $k$ is stretched by $x$ . It takes twice as much work to stretch a second spring by $\frac{x}{2}$ . The force constant of the second spring is,                                             |                        |                                                                      |                                                |  |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------|------------------------------------------------|--|
|                                                                                                                 | (a) k                                                                                                                                                                                                                  |                        | (c) 4k                                                               | (d) 8k                                         |  |
| Q38.                                                                                                            | Which of the following expressions represents an electric field due to a time varying magnetic field?                                                                                                                  |                        |                                                                      |                                                |  |
|                                                                                                                 | (a) $K(x\hat{x} + y\hat{y} + z\hat{z})$                                                                                                                                                                                |                        | (b) $K(x\hat{x} + y\hat{y} - z\hat{z})$                              |                                                |  |
| Q39.                                                                                                            | (c) $K(x\hat{x} - y\hat{y})$<br>In Millikan's oil drop                                                                                                                                                                 | experiment the electro | (d) $K(y\hat{y} - x\hat{y} + 2z\hat{z})$<br>onic charge $e$ could be | e written as $k\eta^{1.5}$ where $\kappa$ is a |  |
|                                                                                                                 | function of all experimental parameters with negligible error. If the viscosity of air $\eta$ is taken to                                                                                                              |                        |                                                                      |                                                |  |
|                                                                                                                 | be $0.4\%$ lower than the actual value, what would be the error in the calculated value of $e$ ?                                                                                                                       |                        |                                                                      |                                                |  |
|                                                                                                                 | (a) 1.5%                                                                                                                                                                                                               | (b) 0.7%               | (c) 0.6%                                                             | (d) 0.4%                                       |  |
| Q40.                                                                                                            | Given the tight binding dispersion relation $E(k) = E_0 + A \sin^2\left(\frac{ka}{2}\right)$ , where $E_0$ and $A$ are                                                                                                 |                        |                                                                      |                                                |  |
| constants and $a$ is the lattice parameter. What is the group velocity of an elesecond Brillouin zone boundary? |                                                                                                                                                                                                                        |                        |                                                                      |                                                |  |
|                                                                                                                 |                                                                                                                                                                                                                        | •                      | $a \geq 2a$                                                          | (a) $a$                                        |  |
|                                                                                                                 | (a) 0                                                                                                                                                                                                                  | $\kappa$               | (c) $\frac{2a}{h}$                                                   | (d) $\frac{a}{2h}$                             |  |
| Q41.                                                                                                            | The total number of $Na^+$ and $Cl^-$ ions per unit cell of $NaCl$ is,                                                                                                                                                 |                        |                                                                      |                                                |  |
|                                                                                                                 | (a) 2                                                                                                                                                                                                                  | (b) 4                  | (c) 6                                                                | (d) 8                                          |  |
| Q42.                                                                                                            | if a Hamiltonian $H$ is given as $H =  0\rangle\langle 0  -  1\rangle\langle 1  + i( 0\rangle\langle 1  -  1\rangle\langle 0 )$ , where $ 0\rangle$ and $ 1\rangle$ are orthonormal states, the eigenvalues of $H$ are |                        |                                                                      |                                                |  |
|                                                                                                                 | (a) $\pm 1$                                                                                                                                                                                                            | (b) $\pm i$            | (c) $\pm \sqrt{2}$                                                   | (d) $\pm i\sqrt{2}$                            |  |
| Q43.                                                                                                            | The stable nucleus that has $\frac{1}{3}$ the radius of $^{189}$ Os nucleus is,                                                                                                                                        |                        |                                                                      |                                                |  |
|                                                                                                                 | (a) Li                                                                                                                                                                                                                 | (b) $^{16}O$           | (c) $^4He$                                                           | (d) $^{14}N$                                   |  |
| Q44.                                                                                                            | A charged particle is released at time $t=0$ , from the origin in the presence of uniform static                                                                                                                       |                        |                                                                      |                                                |  |
|                                                                                                                 | electric and magnetic fields given by $E=E_0\hat{y}$ and $B=B_0\hat{z}$ respectively. Which of the following                                                                                                           |                        |                                                                      |                                                |  |
|                                                                                                                 | statements is true for $t > 0$ ?  (a) The particle moves along the $x$ -axis.  (b) The particle moves in a circular orbit.                                                                                             |                        |                                                                      |                                                |  |
|                                                                                                                 |                                                                                                                                                                                                                        |                        |                                                                      |                                                |  |
|                                                                                                                 |                                                                                                                                                                                                                        |                        |                                                                      |                                                |  |
|                                                                                                                 | (c) The particle moves in the $(x, y)$ plane.                                                                                                                                                                          |                        |                                                                      |                                                |  |
|                                                                                                                 | (d) particle moves in the $(y,z)$ plane                                                                                                                                                                                |                        |                                                                      |                                                |  |



- Consider the differential equation  $G'(x) + kG(x) = \delta(x)$ ; where k is a constant. Which following Q45. statements is true?
  - (a) Both G(x) and G'(x) are continuous at x = 0
  - (b) G(x) is continuous at x = 0 but G'(x) is not
  - (c) G(x) is discontinuous at x = 0
  - (d) The continuity properties of G(x) and G'(x) at x = 0 depends on the value of k
- The sum  $\sum_{m=1}^{99} \frac{1}{\sqrt{m+1} + \sqrt{m}}$  is equal to Q46.
  - (a) 9
- (b)  $\sqrt{99} 1$  (c)  $\frac{1}{(\sqrt{99} 1)}$  (d) 11
- Q47. Let  $\lambda$  be the wavelength of incident light. The diffraction pattern of a circular aperture of dimension  $r_0$  will transform from Fresnel to Fraunhofer regime if the screen distance z is,
- (a)  $z \gg \frac{r_0^2}{\lambda}$  (b)  $z \gg \frac{\lambda^2}{r_0}$  (c)  $z \ll \frac{\lambda^2}{r_0}$
- Q48. For the logic circuit shown in figure 5, the required input condition (A, B, C) to make the output (X)=1 is,
  - (a) 1,0,1
  - (b) 0,0,1
  - (c) 1,1,1
  - (d) 0,1,1



- Q49. The reaction  $e^+ + e^- \rightarrow \gamma$  is forbidden because,
  - (a) lepton number is not conserved
  - (b) linear momentum is not conserved
  - (c) angular momentum is not conserved
  - (d) charge is not conserved
- Q50. Electrons of mass m in a thin, long wire at a temperature T follow a one-dimensional Maxwellian velocity distribution. The most probable speed of these electrons is,
- (b)  $\sqrt{\frac{2kT}{m}}$
- (c) 0