JEST 2016

Part-A: 1-Mark Questions

Given a matrix $M = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, which of the following represents $\cos \left(\frac{\pi M}{6} \right)$ Q1.

(a)
$$\frac{1}{2} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

(b)
$$\frac{\sqrt{3}}{4} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

(c)
$$\frac{\sqrt{3}}{4} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

(a)
$$\frac{1}{2} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
 (b) $\frac{\sqrt{3}}{4} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ (c) $\frac{\sqrt{3}}{4} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ (d) $\frac{1}{2} \begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$

Q2. The wavefunction of a hydrogen atom is given by the following superposition of energy eigen functions $\psi_{nlm}(\vec{r})(n,l,m)$ are the usual quantum numbers):

$$\psi(\vec{r}) = \frac{\sqrt{2}}{\sqrt{7}}\psi_{100}(\vec{r}) - \frac{3}{\sqrt{14}}\psi_{210}(\vec{r}) + \frac{1}{\sqrt{14}}\psi_{322}(\vec{r})$$

The ratio of expectation value of the energy to the ground state energy and the expectation value of L^2 are, respectively:

(a)
$$\frac{229}{504}$$
 and $\frac{12\hbar^2}{7}$

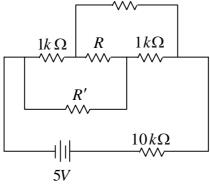
(b)
$$\frac{101}{504}$$
 and $\frac{12\hbar^2}{7}$

(c)
$$\frac{101}{504}$$
 and \hbar^2

(d)
$$\frac{229}{504}$$
 and \hbar^2

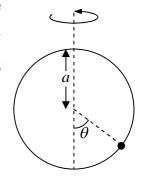
$$\left\langle E\right\rangle = \frac{2}{7} \times \frac{E_0}{1} + \frac{9}{14} \times \frac{E_0}{4} + \frac{1}{14} \times \frac{E_0}{9} = \frac{229}{504} E_0 \left\langle L^2\right\rangle = \frac{2}{7} \times 0 \hbar^2 + \frac{9}{14} \times 2 \hbar^2 + \frac{1}{14} \times 6 \hbar^2 = \frac{24}{14} \hbar^2 = \frac{12}{7} \hbar^2$$

Q3. It is found that when the resistance R indicated in the figure below is changed from $1 k\Omega$ to 10 $k\Omega$ the current flowing through the resistance R' does not change. What is the value of the $10k\Omega$ resistor R'?



- (a) 5 $k\Omega$
- (b) $100 k\Omega$
- (c) $10 k\Omega$
- (d) $1 k\Omega$

A hoop of radius a rotates with constant angular velocity ω about the Q4. vertical axis as shown in the figure. A bead of mass m can slide on the hoop without friction. If $g < \omega^2 a$ at what angle θ apart from 0 and π is the bead stationary (i.e., $\frac{d\theta}{dt} = \frac{d^2\theta}{dt^2} = 0$)?



(a)
$$\tan \theta = \frac{\pi g}{\omega^2 a}$$

(b)
$$\sin \theta = \frac{g}{\omega^2 a}$$

(c)
$$\cos \theta = \frac{g}{\omega^2 a}$$

(d)
$$\tan \theta = \frac{g}{\pi \omega^2 a}$$

A spin- $\frac{1}{2}$ particle in a uniform external magnetic field has energy eigenstates $|1\rangle$ and $|2\rangle$. The Q5. system is prepared in ket-state $\frac{(|1\rangle+|2\rangle)}{\sqrt{2}}$ at time t = 0. It evolves to the state described by the ket $\frac{(|1\rangle - |2\rangle)}{\sqrt{2}}$ in time T. The minimum energy difference between two levels is:

- (a) $\frac{h}{6T}$ (b) $\frac{h}{4T}$
- (c) $\frac{h}{2T}$
- (d) $\frac{h}{T}$

Q6. You receive on avenge 5 emails per day during a 365-days year. The number of days on average on which you do not receive any emails in that year are:

(a) more than 5

(b) More than 2

(c) 1

(d) None of the above

The H_2 molecule has a reduced mass $M = 8.35 \times 10^{-28} \ kg$ and an equilibrium internuclear Q7. distance $R = 0.742 \times 10^{-10} \ m$. The rotational energy in terms of the rotational quantum number J is

- (a) $E_{rot}(J) = 7J(J-1) \ meV$
- (b) $E_{rot}(J) = \frac{5}{2}J(J+1) \ meV$
- (c) $E_{rot}(J) = 7J(J+1) \ meV$
- (d) $E_{rot}(J) = \frac{5}{2}J(J-1) \ meV$

The maximum relativistic kinetic energy of β particles from a radioactive nucleus is equal to Q8. the rest mass energy of the particle. A magnetic field is applied perpendicular to the beam of β particles, which bends it to a circle of radius R. The field is given by:

- (a) $\frac{3m_0c}{eR}$
- (b) $\frac{\sqrt{2m_0c}}{eR}$ (c) $\frac{\sqrt{3m_0c}}{eR}$ (d) $\frac{\sqrt{3m_0c}}{2eR}$

H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016 #: +91-89207-59559, 99715-85002

- The central force which results in the orbit $r = a(1 + \cos \theta)$ for a particle is proportional to: Q9.
 - (a) r
- (b) r^2
- (c) r^{-2}
- (d) None o the above
- A gas of N molecules of mass m is confined in a cube of volume $V = L^3$ at temperature T. The Q10. box is in a uniform gravitational field $-g\hat{z}$. Assume that the potential energy of a molecule is U = mgz where $z \in [0, L]$ is the vertical coordinate inside the box. The pressure P(z) at height *z* is:

(a)
$$P(z) = \frac{N}{V} \frac{mgL}{2} \frac{\exp\left(-\frac{mg\left(z - \frac{L}{2}\right)}{k_BT}\right)}{\sinh\left(\frac{mgL}{2k_BT}\right)}$$

$$\exp\left(-\frac{mg\left(z-\frac{L}{2}\right)}{k_BT}\right) \qquad \exp\left(-\frac{mg\left(z-\frac{L}{2}\right)}{k_BT}\right)$$
(a) $P(z) = \frac{N}{V} \frac{mgL}{2} \frac{\exp\left(-\frac{mg\left(z-\frac{L}{2}\right)}{k_BT}\right)}{\cosh\left(\frac{mgL}{2k_BT}\right)}$

(c)
$$P(z) = \frac{k_B T N}{V}$$

(d)
$$P(z) = \frac{N}{V} mgz$$

Q11. A transistor in common base configuration has ratio of collector current to emitter current β and ratio of collector to base current α . Which of the following is true?

(a)
$$\beta = \frac{\alpha}{(\alpha + 1)}$$

(b)
$$\beta = \frac{(\alpha + 1)}{\alpha}$$

(c)
$$\beta = \frac{\alpha}{(\alpha - 1)}$$

(d)
$$\beta = \frac{(\alpha - 1)}{\alpha}$$

The energy of a particle is given by E = |p| + |q| where p and q are the generalized momentum Q12. and coordinate, respectively. All the states with $E \le E_0$ are equally probable and states with $E>E_{\scriptscriptstyle 0}$ are inaccessible. The probability density of finding the particle at coordinate q , with q > 0 is:

(a)
$$\frac{\left(E_{0}+q\right)}{E_{0}^{2}}$$
 (b) $\frac{q}{E_{0}^{2}}$

(b)
$$\frac{q}{E_0^2}$$

(c)
$$\frac{\left(E_0 - q\right)}{E_0^2}$$
 (d) $\frac{1}{E_0}$

(d)
$$\frac{1}{E_0}$$

Consider a quantum particle of mass m in one dimension in an infinite potential well, i.e., Q13. V(x) = 0 for $\frac{-a}{2} < x < \frac{a}{2}$ and $V(x) = \infty$ for $|x| \ge \frac{a}{2}$. A small perturbation, $V'(x) = \frac{2 \in |x|}{a}$ is added. The change in the ground state energy to $O(\epsilon)$ is:

(a)
$$\frac{\epsilon}{2\pi^2} (\pi^2 - 4)$$

(b)
$$\frac{\epsilon}{2\pi^2} (\pi^2 + 4)$$

(c)
$$\frac{\in \pi^2}{2} (\pi^2 + 4)$$

(d)
$$\frac{\in \pi^2}{2} (\pi^2 - 4)$$

The strength of magnetic field at the center of a regular hexagon with sides of length a Q14. carrying a steady current I is:

(a)
$$\frac{\mu_0 I}{\sqrt{3}\pi a}$$

(b)
$$\frac{\sqrt{6}\mu_0 I}{\pi a}$$
 (c) $\frac{3\mu_0 I}{\pi a}$

(c)
$$\frac{3\mu_0 I}{\pi a}$$

(d)
$$\frac{\sqrt{3}\mu_0 I}{\pi a}$$

Q15. An ideal gas with adiabatic exponent γ undergoes a process in which its pressure P is related to its volume V by the relation $P=P_0-\alpha V$, where P_0 and α are positive constants. The volume starts from being very close to zero and increases monotonically to $\frac{P_0}{\alpha}$. At what value of the volume during the process does the gas have maximum entropy?

(a)
$$\frac{P_0}{\alpha(1+\gamma)}$$
 (b) $\frac{\gamma P_0}{\alpha(1-\gamma)}$ (c) $\frac{\gamma P_0}{\alpha(1+\gamma)}$ (d) $\frac{P_0}{\alpha(1-\gamma)}$

(b)
$$\frac{\gamma P_0}{\alpha (1-\gamma)}$$

(c)
$$\frac{\gamma P_0}{\alpha (1+\gamma)}$$

(d)
$$\frac{P_0}{\alpha (1-\gamma)}$$

Q16. A point charge q of mass m is released from rest at a distance d from an infinite grounded conducting plane (ignore gravity). How long does it take for the charge to hit the plane?

(a)
$$\frac{\sqrt{2\pi^3 \varepsilon_0 m d^3}}{q}$$

(b)
$$\frac{\sqrt{2\pi^3\varepsilon_0 md}}{q}$$

(c)
$$\frac{\sqrt{\pi^3 \varepsilon_0 m d^3}}{q}$$

(d)
$$\frac{\sqrt{\pi^3 \varepsilon_0 md}}{q}$$

A two dimensional box in a uniform magnetic field B contains $\frac{N}{2}$ localised spin- $\frac{1}{2}$ particles Q17. with magnetic moment μ , and $\frac{N}{2}$ free spinless particles which do not interact with each other. The average energy of the system at a temperature T is:

(a)
$$3NkT - \frac{1}{2}N\mu B \sinh\left(\frac{\mu B}{k_B T}\right)$$

(b)
$$NkT - \frac{1}{2}N\mu B \tanh\left(\frac{\mu B}{k_B T}\right)$$

(c)
$$\frac{1}{2}NkT - \frac{1}{2}N\mu B \tanh\left(\frac{\mu B}{k_B T}\right)$$

(d)
$$\frac{3}{2}NkT + \frac{1}{2}N\mu B \cosh\left(\frac{\mu B}{k_B T}\right)$$

- If $Y_{xy} = \frac{1}{\sqrt{2}} (Y_{22} Y_{2,-2})$ where $Y_{l,m}$ are spherical harmonics then which of the following is true? Q18.
 - (a) Y_{xy} is an eigenfunction of both L^2 and L_z
 - (b) Y_{xy} is an eigenfunction of L^2 but not L_z
 - (c) Y_{xy} is an eigenfunction both of L_z but not L^2
 - (d) Y_{xy} is not an eigenfunction of either L^2 and L_z
- The value of the integral $\int_0^\infty \frac{\ln x}{(x^2+1)} dx$ Q19.
 - (a) $\frac{\pi^2}{\cdot}$
- (b) $\frac{\pi^{2}}{2}$
- (c) π^2
- (d) 0
- A spin-1 particle is in a state $|\psi\rangle$ described by the column matrix $\left(\frac{1}{\sqrt{10}}\right)\left\{2, \sqrt{2}, 2i\right\}$ Q20. \mathbf{S}_z basis. What is the probability that a measurement of operator \mathbf{S}_z will yield the result h for the state $S_{x}|\psi\rangle$?
 - (a) $\frac{1}{2}$
- (c) $\frac{1}{4}$
- Consider N non-interacting electrons $(N \sim N_A)$ in a box of sides L_x, L_y, L_z Assuming that the Q21. dispersion relation is $\in (k) = Ck^4$ where C is a constant, the ratio of the ground state energy per particle to the Fermi energy is:
- (b) $\frac{7}{3}$ (c) $\frac{3}{5}$
- The Hamiltonian of a quantum particle of mass in confined to a ring of unit radius is: Q22.

$$H = \frac{\hbar^2}{2m} \left(-i \frac{\partial}{\partial \theta} - \alpha \right)^2$$

where θ is the angular coordinate, α is a constant. The energy eigenvalues and eigenfunctions of the particle are (n is an integer):

(a)
$$\psi_n(\theta) = \frac{e^{in\theta}}{\sqrt{2}\pi}$$
 and $E_n = \frac{\hbar^2}{2m}(n-\alpha)^2$

(b)
$$\psi_n(\theta) = \frac{\sin(n\theta)}{\sqrt{2}\pi}$$
 and $E_n = \frac{\hbar^2}{2m}(n-\alpha)^2$

(c)
$$\psi_n(\theta) = \frac{\cos(n\theta)}{\sqrt{2}\pi}$$
 and $E_n = \frac{\hbar^2}{2m}(n-\alpha)^2$

(d)
$$\psi_n(\theta) = \frac{e^{in\theta}}{\sqrt{2}\pi}$$
 and $E_n = \frac{\hbar^2}{2m}(n+\alpha)^2$

O23.	The sum of the infinite series	$1 - \frac{1}{-} +$	1_	1+	 İS
		3	5	7	

(a) 2π

(b) π

(c) $\frac{\pi}{2}$

(d) $\frac{\pi}{4}$

Q24. Light takes approximately 8 minutes to travel from the Sun to the Earth. Suppose in the frame of the Sun an event occurs at t=0 at the Sun and another event occurs on Earth at t=1minute. The velocity of the inertial frame in which both these events are simultaneous is:

(a) $\frac{c}{s}$ with the velocity vector pointing from Earth to Sun

(b) $\frac{c}{8}$ with the velocity vector pointing from Sun to Earth

(c) The events can never be simultaneous - no such frame exists

(d) $c\sqrt{1-\left(\frac{1}{8}\right)^2}$ with velocity vector Pointing from to Earth

Q25. A spherical shell of radius R carries a constant surface charge density σ and is rotating about one of its diameters with an angular velocity ω . The magnitude of the magnetic moment of the shell is:

(a) $4\pi\sigma\omega R^4$ (b) $\frac{4\pi\sigma\omega R^4}{3}$ (c) $\frac{4\pi\sigma\omega R^4}{15}$ (d) $\frac{4\pi\sigma\omega R^4}{9}$

Part-B: 1-Mark Questions

The ad joint of a differential operator $\frac{d}{dx}$ acting on a wavefunction $\psi(x)$ for a quantum Q1. mechanical system is:

(a) $\frac{d}{dx}$

(b) $-i\hbar \frac{d}{dx}$ (c) $-\frac{d}{dx}$

(d) $i\hbar \frac{d}{dx}$

In Millikan's oil-drop experiment an oil drop of radius r, mass m and charge $q = \frac{6\pi\eta r(v_1 + v_2)}{F}$ Q2.

is moving upwards with a terminal velocity v_2 due to an applied electric field of magnitude E, where η is the coefficient of viscosity. The acceleration due to gravity is given

(a) $g = \frac{6\pi\eta r v_1}{m}$

(b) $g = \frac{3\pi \eta \, r \, v_1}{m}$

(c) $g = \frac{6\pi\eta \, r \, v_2}{m}$

(d) $g = \frac{3\pi\eta \, r \, v_2}{m}$

Q3.	The electric field $\vec{E} = E_0 \sin(\omega t - kz)\hat{x} + 2E_0 \sin(\omega t - kz)$	$\left(\omega t - kz + \frac{\pi}{2}\right)$	\hat{y} represents
-----	--	--	----------------------

- (a) a linwearly polarized wave
- (b) a right-hand circularly polarized wave
- (c) a left-hand circularly polarized wave
- (d) an elliptically polarized wave
- An ideal gas has a specific heat ratio $\frac{C_P}{C_{\cdot\cdot}}$ = 2 . Starting at a temperature T_1 the gas under goes an Q4. isothermal compression to increase its density by a factor of two. After this an adiabatic compression increases its pressure by a factor of two. The temperature of the gas at the end of the second process would be:
 - (a) $\frac{T_1}{2}$
- (b) $\sqrt{2}T_{1}$
- (c) $2T_1$
- (d) $\frac{T_1}{\sqrt{2}}$
- Suppose yz plane forms the boundary between two linear dielectric media I and II with Q5. dielectric constant $\in_I = 3$ and $\in_I = 4$, respectively. If the electric field in region I at the interface is given by $\vec{E}_I = 4\hat{x} + 3\hat{y} + 5\hat{z}$, then the electric field \vec{E}_{II} at the interface in region II is:
 - (a) $4\hat{x} + 3\hat{y} + 5\hat{z}$

(b) $4\hat{x} + 0.75\hat{y} - 1.25\hat{z}$

(c) $-3\hat{x} + 3\hat{y} + 5\hat{z}$

- (d) $3\hat{x} + 3\hat{y} + 5\hat{z}$
- Given the condition $\nabla^2\phi=0$, the solution of the equation $\nabla^2\psi=k\vec{\nabla}\phi.\vec{\nabla}\phi$ is given by Q6.
 - (a) $\psi = \frac{k\phi^2}{2}$
- (b) $\psi = k\phi^2$ (c) $\psi = \frac{k\phi \ln \phi}{2}$
- (d) $\psi = \frac{k\phi \ln \phi}{2}$
- Q7. Circular fringes are obtained with a Michelson interferometer using 600 nm laser light. What minimum displacement of one mirror will make the central fringe from bright to dark?
 - (a) 600 nm
- (b) 300 nm
- (c) 150 nm

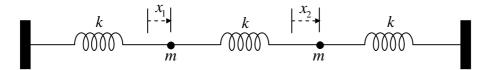
- If \vec{k} is the wavevector of incident light ($|\vec{k}| = \frac{2\pi}{\lambda}$, λ is the wavelength of light) and \vec{G} is a Q8. reciprocal lattice vector, then the Bragg's law can be written as:
 - (a) $\vec{k} + \vec{G} = 0$

(b) $2\vec{k}.\vec{G} + G^2 = 0$

(c) $2\vec{k}.\vec{G} + k^2 = 0$

(d) $\vec{k} \cdot \vec{G} = 0$

For the coupled system shown in the figure, the normal coordinates are $x_1 + x_2$ and $x_1 - x_2$ Q9. corresponding to the normal frequencies ω_0 and $\sqrt{3}\omega_0$ respectively.



At t=0, the displacements are $x_1=A$, $x_2=0$, and the velocities are $v_1=v_2=0$. The displacement of the second particle at time t is given by:

(a)
$$x_2(t) = \frac{A}{2} \left(\cos(\omega_0 t) + \cos(\sqrt{3}\omega_0 t) \right)$$
 (b) $x_2(t) = \frac{A}{2} \left(\cos(\omega_0 t) - \cos(\sqrt{3}\omega_0 t) \right)$

(b)
$$x_2(t) = \frac{A}{2} \left(\cos(\omega_0 t) - \cos(\sqrt{3}\omega_0 t) \right)$$

(c)
$$x_2(t) = \frac{A}{2} \left(\sin(\omega_0 t) - \sin(\sqrt{3}\omega_0 t) \right)$$

(c)
$$x_2(t) = \frac{A}{2} \left(\sin(\omega_0 t) - \sin(\sqrt{3}\omega_0 t) \right)$$
 (d) $x_2(t) = \frac{A}{2} \left(\sin(\omega_0 t) - \frac{1}{\sqrt{3}} \sin(\sqrt{3}\omega_0 t) \right)$

How much force does light from a 1.8 W laser exert when it is totally absorbed by an object? Q10.

- (a) $6.0 \times 10^{-9} N$
- (b) $0.6 \times 10^{-9} N$ (c) $0.6 \times 10^{-8} N$
- (d) $4.8 \times 10^{-9} N$

Q11. An electron confined within a thin layer of semiconductor may be treated as a free particle inside an infinitely deep one-dimensional potential well. If the difference in energies between the first and the second energy levels is δE , then the thickness of the layer is:

(a)
$$\sqrt{\frac{3\hbar^2\pi^2}{2m\delta E}}$$

(b)
$$\sqrt{\frac{2\hbar^2\pi^2}{3m\delta E}}$$

(a)
$$\sqrt{\frac{3\hbar^2\pi^2}{2m\delta E}}$$
 (b) $\sqrt{\frac{2\hbar^2\pi^2}{3m\delta E}}$ (c) $\sqrt{\frac{\hbar^2\pi^2}{2m\delta E}}$ (d) $\sqrt{\frac{\hbar^2\pi^2}{m\delta E}}$

(d)
$$\sqrt{\frac{\hbar^2\pi^2}{m\delta E}}$$

The half-life of a radioactive nuclear source is 9 days. The fraction of nuclei which are left Q12. under cayed after 3 days is:

- (a) $\frac{7}{6}$
- (b) $\frac{1}{2}$
- (c) $\frac{5}{6}$
- (d) $\frac{1}{\frac{1}{2}}$

Self inductance per unit length of a long solenoid of radius R with n turns per unit length is: Q13.

(a) $\mu_0 \pi R^2 n^2$

(b) $2\mu_0 \pi R^2 n$

(c) $2\mu_0\pi R^2n^2$

(d) $\mu_0 \pi R^2 n$

A gas contains particles of type A with fraction 0.8, and particles of type B with fraction 0.2. Q14. The probability that among 3 randomly chosen particles at least one is of type A is:

- (a) 0.8
- (b) 0.25
- (c) 0.33
- (d) 0.992

The number of different Bravais lattices possible in two dimensions is: Q15.

- (a) 2
- (b) 3
- (c) 5
- (d) 6

Part-C: 3-Mark Questions

Q1. The output intensity I of radiation from a single mode of resonant cavity obeys

$$\frac{d}{dt}I = -\frac{\omega_0}{Q}I$$

where Q is the quality factor of the cavity $\omega_{\scriptscriptstyle 0}$ is the resonant frequency. The form of the frequency spectrum of the output is:

- (a) Delta function
- (b) Gaussian
- (c) Lorentzian
- (d) Exponential

For a quantum mechanical harmonic oscillator with energies, $E_n = \left(n + \frac{1}{2}\right)\hbar\omega$, where Q2. n = 0, 1, 2..., the partition function is:

- (b) $e^{\frac{\hbar\omega}{2k_BT}} 1$ (c) $e^{\frac{\hbar\omega}{2k_BT}} + 1$
- (d) $\frac{e^{\frac{\hbar\omega}{2k_BT}}}{\frac{\hbar\omega}{T-T-1}}$

Q3. If the direction with respect to a right-handed cartesian coordinate system of the ket vector $|z,+\rangle$ is (0. u. l), then the direction of the ket vector obtained by application of rotations:

 $\exp\left(-i\sigma_z\frac{\pi}{2}\right)\exp\left(i\sigma_y\frac{\pi}{4}\right)$, on the ket $|z,+\rangle$ is (σ_y,σ_z) are the Pauli matrices):

(a) (0, 1, 0)

(b) (1, 0, 0)

(c) $\frac{(1, 1, 0)}{\sqrt{2}}$

(d) $\frac{(1, 1, 1)}{\sqrt{2}}$

Q4. In the ground state of hydrogen atom, the most probable distance of the electron from the nucleus, in units of Bohr radius a_0 is:

- (a) $\frac{1}{2}$
- (b) 1
- (c) 2
- (d) $\frac{3}{2}$

For operators P and Q, the commutator $\lceil P, Q^{-1} \rceil$ is Q5.

- (a) $Q^{-1}[P,Q]Q^{-1}$ (b) $-Q^{-1}[P,Q]Q^{-1}$ (c) $Q^{-1}[P,Q]Q$ (d) $-Q[P,Q]Q^{-1}$

mean value of random variable with Q6. probability density

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot \exp\left[-\frac{(x^2 + \mu x)}{(2\sigma^2)}\right]$$
 is:

- (a) 0
- (b) $\frac{\mu}{2}$
- (c) $\frac{-\mu}{2}$
- (d) σ

A spin $\frac{1}{2}$ particle is in a state $\frac{\left(\left|\uparrow\right\rangle + \left|\downarrow\right\rangle\right)}{\sqrt{2}}$ where $\left|\uparrow\right\rangle$ and $\left|\downarrow\right\rangle$ are the eigenstates of S_z Q7.

operator. The expectation value of the spin angular momentum measured along x direction is:

(a) \hbar

(b) $-\hbar$

(c)0

(d) $\frac{\hbar}{2}$

Q8. A semicircular piece of paper is folded to make a cone with the centre of the semicircle as the apex. The half-angle of the resulting cone would be:

(a) 90°

(b) 60°

(d) 30°

If the Rydberg constant of an atom of finite nuclear mass is $\alpha R_{_{\!\infty}}$, where $R_{_{\!\infty}}$ the Rydberg Q9. constant corresponding to an infinite nuclear mass, the ratio of the electronic to nuclear mass of the atom is:-

(a) $\frac{(1-\alpha)}{\alpha}$

(b) $\frac{(\alpha-1)}{\alpha}$ (c) $(1-\alpha)$

(d) $\frac{1}{\alpha}$

Q10. A cylindrical shell of mass in has an outer radius b and an inner radius a. The moment of inertia of the shell about the axis of the cylinder is:

(a) $\frac{1}{2}m(b^2-a^2)$ (b) $\frac{1}{2}m(b^2+a^2)$ (c) $m(b^2+a^2)$ (d) $m(b^2-a^2)$