Pravegae Education

8920759559, 9971585002 | <u>www.pravegaa.com</u>

JEST 2017

Part-A: 1-Mark Questions

- Q1. A thin air film of thickness *d* is formed in a glass medium. For normal incidence, the condition for constructive interference in the reflected beam is (in terms of wavelength λ and integer m = 0, 1, 2, ...)
 - (a) $2d = (m 1/2)\lambda$ (b) $2d = m\lambda$
 - (c) $2d = (m-1)\lambda$ (d) $2\lambda = (m-1/2)d$
- Q2. Consider the circuit shown in the figure where $R_1 = 2.07 k \Omega$ and $R_2 = 1.93 k \Omega$. Current source *I* delivers 10 mA current. The potential across the diode *D* is 0.7V. What is the potential at *A*?

(a) 10.35V (b) 9.65V (c) 19.30V (d) 4.83V

- Q3. $\int_{-\infty}^{+\infty} (x^2 + 1) \delta (x^2 3x + 2) dx = ?$ (a) 1 (b) 2 (c) 5 (d) 7
- Q4. A bead of mass *M* slides along a parabolic wire described by $z = 2(x^2 + y^2)$. The wire rotates with angular velocity Ω about the *z* axis. At what value of Ω does the bead maintain a constant nonzero height under the action of gravity along $-\hat{z}$?
 - (a) $\sqrt{3g}$ (b) \sqrt{g} (c) $\sqrt{2g}$ (d) $\sqrt{4g}$

Q5. Which one is the image of the complex domain $\{z | xy \ge 1, x + y > 0\}$ under the mapping $f(z) = z^2$, if z = x + iy? (a) $\{z | xy \ge 1, x + y > 0\}$ (b) $\{z | x \ge 2, x + y > 0\}$

(c) $\{z \mid y \ge 2 \forall x\}$ (d) $\{z \mid y \ge 1 \forall x\}$

Pravegae Education

8920759559, 9971585002 | <u>www.pravegaa.com</u>

- Q6. After the detonation of an atom bomb, the spherical ball of gas was found to be of 15 meter radius at a temperature of $3 \times 10^5 K$. Given the adiabatic expansion coefficient $\gamma = 5/3$, what will be the radius of the ball when its temperature reduces to $3 \times 10^3 K$?
 - (a) 156m (b) 50m (c) 150m (d) 100m
- Q7. What is *Y* for the circuit shown below?

Pravegae Education

8920759559, 9971585002 | <u>www.pravegaa.com</u>

- Q11. (Q_1, Q_2, P_1, P_2) and (q_1, q_2, p_1, p_2) are two sets of canonical coordinates, where Q_i and q_i are the coordinates and P_i and p_i are the corresponding conjugate momenta. If $P_1 = q_2$ and $P_2 = p_1$, then which of the following relations is true?
 - (a) $Q_1 = q_1, Q_2 = p_2$ (b) $Q_1 = p_2, Q_2 = q_1$

(c)
$$Q_1 = -p_2, Q_2 = q_1$$
 (d) $Q_1 = q_1, Q_2 = -p_2$

Q12. Consider magnetic vector potential \vec{A} and scalar potential Φ which define the magnetic field \vec{B} and electric field \vec{E} . If one adds $-\vec{\nabla}\lambda$ to \vec{A} for a well-defined λ , then what should be added to Φ so that \vec{E} remains unchanged up to an arbitrary function of time, f(t)?

(a)
$$\frac{\partial \lambda}{\partial t}$$
 (b) $-\frac{\partial \lambda}{\partial t}$ (c) $\frac{1}{2} \frac{\partial \lambda}{\partial t}$ (d) $-\frac{1}{2} \frac{\partial \lambda}{\partial t}$

Q13. In the following silicon diode circuit $(V_B = 0.7V)$, determine the output voltage waveform (V_{out}) for the given input wave.

H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016 #: +91-89207-59559, 99715-85002

Website: <u>www.pravegaa.com</u> | Email: <u>pravegaaeducation@gmail.com</u>

Pravegae Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

8920759559, 9971585002 | <u>www.pravegaa.com</u>

H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016 #: +91-89207-59559, 99715-85002

 $\phi_0(x)$ and $\phi_1(x)$ are respectively are orthonormal wavefunctions of the ground and first Q14. excited states of a one dimensional simple harmonic oscillator. Consider the normalised wave function $\psi(x) = c_0 \phi_0(x) + c_1 \phi_1(x)$, where c_0 and c_1 are real. For what values of c_0 and c_1 will $\langle \psi(x)|x|\psi(x)\rangle$ be maximized?

- (a) $c_0 = c_1 = +1/\sqrt{2}$ (b) $c_0 = -c_1 = +1/\sqrt{2}$ (d) $c_0 = +\sqrt{3}/2, c_1 = -1/2$ (c) $c_0 = +\sqrt{3}/2, c_1 = +1/2$
- Q15. Consider the following circuit in steady state condition. Calculate the amount of charge stored in $1\mu F$ and $2\mu F$ capacitors respectively.

H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016 #: +91-89207-59559, 99715-85002

Pravegae Education

8920759559, 9971585002 | <u>www.pravegaa.com</u>

Q16. If the mean square fluctuations in energy of a system in equilibrium at temperature *T* is proportional to T^{α} , then the energy of the system is proportional to

(a)
$$T^{\alpha-2}$$
 (b) $T^{\frac{\alpha}{2}}$ (c) $T^{\alpha-1}$ (d) T^{α}

Q17. Suppose the spin degrees of freedom of a 2- particle system can be described by a 21dimensional Hilbert subspace. Which among the following could be the spin of one of the particles?

(a)
$$\frac{1}{2}$$
 (b) 3 (c) $\frac{3}{2}$ (d) 2

Q18. Water is poured at a rate of $Rm^3/hour$ from the top into a cylindrical vessel of diameter D. The vessel has a small opening of area $a(\sqrt{a} \ll D)$ at the bottom. What should be the minimum height of the vessel so that water does not overflow?

(a)
$$\infty$$
 (b) $\frac{R^2}{2ga^2}$ (c) $\frac{R^2}{2gaD^2}$ (d) $\frac{8R^2}{\pi D^2 g^2}$

Q19. Suppose that we toss two fair coins hundred times each. The probability that the same number of heads occur for both coins at the end of the experiment is

(a)
$$\left(\frac{1}{4}\right)^{100} \sum_{n=0}^{100} {\binom{100}{n}}$$

(b) $2\left(\frac{1}{4}\right)^{100} \sum_{n=0}^{100} {\binom{100}{n}}^2$
(c) $\frac{1}{2}\left(\frac{1}{4}\right)^{100} \sum_{n=0}^{100} {\binom{100}{n}}^2$
(d) $\left(\frac{1}{4}\right)^{100} \sum_{n=0}^{100} {\binom{100}{n}}^2$

- Q20. What is the equation of the plane which is tangent to the surface xyz = 4 at the point (1, 2, 2)?
 - (a) x + 2y + 4z = 12 (b) 4x + 2y + z = 12
 - (c) x + 4y + z = 0 (d) 2x + y + z = 6

Q21. If the ground state wavefunction of a particle moving in a one dimensional potential is proportional to $\exp(-x^2/2)\cosh(\sqrt{2}x)$, then the potential in suitable units such that $\hbar = 1$, is proportional to

- (a) x^2 (b) $x^2 2\sqrt{2}x \tanh(\sqrt{2}x)$
- (c) $x^2 2\sqrt{2}x \tan(\sqrt{2}x)$ (d) $x^2 2\sqrt{2}x \coth(\sqrt{2}x)$

8920759559, 9971585002 | <u>www.pravegaa.com</u>

Q22. A possible Lagrangian for a free particle is

(a)
$$L = \dot{q}^2 - q^2$$

(b) $L = \dot{q}^2 - q\dot{q}$
(c) $L = \dot{q}^2 - q$
(d) $L = \dot{q}^2 - \frac{1}{q}$

- Q23. A rod of mass *m* and length *l* is suspended from two massless vertical springs with a spring constants k_1 and k_2 . What is the Lagrangian for the system, if x_1 and x_2 be the displacements from equilibrium position of the two ends of the rod?
 - (a) $\frac{m}{8} \left(\dot{x}_{1}^{2} + 2\dot{x}_{1}\dot{x}_{2} + \dot{x}_{2}^{2} \right) \frac{1}{2}k_{1}x_{1}^{2} \frac{1}{2}k_{2}x_{2}^{2}$ (b) $\frac{m}{2} \left(\dot{x}_{1}^{2} + \dot{x}_{1}\dot{x}_{2} + \dot{x}_{2}^{2} \right) - \frac{1}{4} \left(k_{1} + k_{2} \right) \left(x_{1}^{2} + x_{2}^{2} \right)$ (c) $\frac{m}{6} \left(\dot{x}_{1}^{2} + x_{1}\dot{x}_{2} + \dot{x}_{2}^{2} \right) - \frac{1}{2}k_{1}x_{1}^{2} - \frac{1}{2}k_{2}x_{2}^{2}$ (d) $\frac{m}{2} \left(\dot{x}_{1}^{2} - 2\dot{x}_{1}\dot{x}_{2} + \dot{x}_{2}^{2} \right) - \frac{1}{4} \left(k_{1} - k_{2} \right) \left(x_{1}^{2} + x_{2}^{2} \right)$
- Q24. Two equal positive charges of magnitude +q separated by a distance d are surrounded by a uniformly charged thin spherical shell of radius 2d bearing a total charge -2q and centred at the midpoint between the two positive charges. The net electric field at distance τ from the midpoint (>> d) is
 - (a) zero (b) proportional to *d*
 - (c) proportional to $1/r^3$ (d) proportional to $1/r^4$
- Q25. If the Hamiltonian of a classical particles is $H = \frac{p_x^2 + p_y^2}{2m} + xy$, then $\langle x^2 + xy + y^2 \rangle$ at

temperature T is equal to

(a) $k_B T$ (b) $\frac{1}{2} k_B T$ (c) $2k_B T$ (d) $\frac{3}{2} k_B T$

Ans (a)

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics # 8920759559, 9971585002 | www.pravegaa.com

Part-B: 3-Mark Questions

- Q1. A solid, insulating sphere of radius 1cm has charge $10^{-7}C$ distributed uniformly over its volume. It is surrounded concentrically by a conducting thick spherical shell of inner radius 2cm, outer radius 2.5cm and is charged with $-2 \times 10^{-7}C$. What is the electrostatic potential in Volts on the surface of the sphere?
- Q2. A particle is described by the following Hamiltonian

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2 + \lambda \hat{x}^4$$

where the quartic term can be treated perturbatively. If ΔE_0 and ΔE_1 denote the energy correction of $O(\lambda)$ to the ground state and the first excited state respectively, what is the fraction $\Delta E_1 / \Delta E_0$?

- Q3. A simple pendulum has a bob of mass 1 kg and charge 1 Coulomb. It is suspended by a massless string of length 13 m. The time period of small oscillations of this pendulum is T_0 . If an electric field $\vec{E} = 100\hat{x}V/m$ is applied, the time period becomes T. What is the value of $(T_0/T)^4$?
- Q4. Let a particle of mass $1 \times 10^{-9} kg$, constrained to have one dimensional motion, be initially at the origin (x = 0 m). The particle is in equilibrium with a thermal bath $(k_B T = 10^{-8} J)$. What is $\langle x^2 \rangle$ of the particle after a time t = 5 s?
- Q5. For the circuit shown below, what is the ratio $\frac{I_1}{I_2}$?

Pravegae Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

8920759559, 9971585002 | <u>www.pravegaa.com</u>

- Q6. A ball of mass 0.1kg and density $2000 kg/m^3$ is suspended by a massless string of length 0.5 m under water having density $1000 kg/m^3$. The ball experiences a drag force, $\vec{F}_d = -0.2(\vec{v}_b \vec{v}_w)$, where \vec{v}_b and \vec{v}_w are the velocities of the ball and water respectively. What will be the frequency of small oscillations for the motion of pendulum, if the water is at rest?
- Q7. Suppose that the number of microstates available to a system of N particles depends on N and the combined variable UV^2 , where U is the internal energy and V is the volume of the system. The system initially has volume $2m^3$ and energy 200J. It undergoes an isentropic expansion to volume $4m^3$. What is the final pressure of the system in SI units?
- Q8. The temperature in a rectangular plate bounded by the lines, x = 0, y = 0, x = 3 and y = 5 is $T = xy^2 x^2y + 100$. What is the maximum temperature difference between two points on the plate?
- Q9. A sphere of inner radius 1 cm and outer radius 2 cm, centered at origin has a volume charge density $\rho_0 = \frac{K}{4\pi r}$, where *K* is a nonzero constant and *r* is the radial distance. A point charge of magnitude $10^{-3} C$ is placed at the origin. For what value of *K* in units of C/m^2 the electric field inside shell is constant?
- Q10. If $\hat{x}(t)$ be the position operator at a time t in the Heisenberg picture for a particle described by the Hamiltonian, $\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2$ what is $e^{i\omega t} \langle 0|\hat{x}(t)\hat{x}(0)|0\rangle$ in units of $\frac{\hbar}{2m\omega}$ where $|0\rangle$ is the ground state?

Part-C: 3-Mark Questions

Q1. Consider a grounded conducting plane which is infinitely extended perpendicular to the *y*-axis at y = 0. If an infinite line of charge per unit length λ runs parallel to *x*-axis at y = d, then surface charge density on the conducting plane is

(a)
$$\frac{-\lambda d}{\left(x^2 + d^2 + z^2\right)}$$
(b)
$$\frac{-\lambda d}{\left(x^2 + d^2 + z^2\right)}$$
(c)
$$\frac{-\lambda d}{\pi \left(x^2 + d^2 + z^2\right)}$$
(d)
$$\frac{-\lambda d}{2\pi \left(x^2 + d^2 + z^2\right)}$$

8920759559, 9971585002 | <u>www.pravegaa.com</u>

Q2. A system of particles on N lattice sites is in equilibrium at temperature T and chemical potential μ . Multiple occupancy of the sites is forbidden. The binding energy of a particle at each site is $-\epsilon$. The probability of no site being occupied is

(a)
$$\frac{1-e^{\beta(\mu+\epsilon)}}{1-e^{(N+1)\beta(\mu+\epsilon)}}$$
(b)
$$\frac{1}{\left[1+e^{\beta(\mu+\epsilon)}\right]^{N}}$$
(c)
$$\frac{1}{\left[1+e^{-\beta(\mu+\epsilon)}\right]^{N}}$$
(d)
$$\frac{1-e^{\beta(\mu+\epsilon)}}{1-e^{-(N+1)\beta(\mu+\epsilon)}}$$

- Q3. The integral $I = \int_{1}^{\infty} \frac{\sqrt{x-1}}{(1+x)^2} dx$ is
 - (a) $\frac{\pi}{\sqrt{2}}$ (b) $\frac{\pi}{2\sqrt{2}}$ (c) $\frac{\sqrt{\pi}}{2}$ (d) $\sqrt{\frac{\pi}{2}}$
- Q4. For an electric field $\vec{E} = k\sqrt{x\hat{x}}$ where k is a non-zero constant, total charge enclosed by the cube as shown below is

Q5. Consider a point particle A of mass m_A colliding elastically with another point particle B of mass m_B at rest, where $\frac{m_B}{m_A} = \gamma$. After collision, the ratio of the kinetic energy of particle B to

the initial kinetic energy of particle A is given by

(a)
$$\frac{4}{\gamma + 2 + \frac{1}{\gamma}}$$
 (b) $\frac{2}{\gamma + \frac{1}{\gamma}}$
(c) $\frac{2}{\gamma + 2 - \frac{1}{\gamma}}$ (d) $\frac{1}{\gamma}$

Pravegae Education

8920759559, 9971585002 | <u>www.pravegaa.com</u>

Q6. Two classical particles are distributed among N(>2) sites on a ring. Each site can accommodate only one particle. If two particles occupy two nearest neighbour sites, then the energy of the system is increased by \in . The average energy of the system at temperature *T* is

(a)
$$\frac{2 \in e^{-\beta \epsilon}}{(N-3)+2e^{-\beta \epsilon}}$$
 (b)
$$\frac{2N \in e^{-\beta \epsilon}}{(N-3)+2e^{-\beta \epsilon}}$$

(c)
$$\frac{\epsilon}{N}$$
 (d) $\frac{2\epsilon e^{-\beta\epsilon}}{(N-2)+2e^{-\beta\epsilon}}$

Q7. Consider a 741 operational amplifier circuit as shown below, where $V_{CC} = V_{EE} = +15V$ and $R = 2.2 k\Omega$. If $v_I = 2mV$, what is the value of v_0 with respect to the ground?

(a) -1mV (b) -2mV (c) -3mV (d) -4mV

Q8. The Fourier transform of the function $\frac{1}{x^4 + 3x^2 + 2}$ up to proportionality constant is

- (a) $\sqrt{2} \exp(-k^2) \exp(-2k^2)$ (b) $\sqrt{2} \exp(-|k|) \exp(-\sqrt{2}|k|)$ (c) $\sqrt{2} \exp(-\sqrt{|k|}) - \exp(-\sqrt{2|k|})$ (d) $\sqrt{2} \exp(-\sqrt{2}k^2) - \exp(-2k^2)$ Q9. If $\rho = \frac{\left[I + \frac{1}{\sqrt{3}}(\sigma_x + \sigma_y + \sigma_z)\right]}{2}$, where σ 's are the Pauli matrices and I is the identity matrix, then the trace of σ^{2017} is
 - (a) 2^{2017} (b) 2^{-2017} (c) 1 (d) $\frac{1}{2}$

Pravegae Education

8920759559, 9971585002 | <u>www.pravegaa.com</u>

Q10. A cylinder at temperature T = 0 is separated into two compartments A and B by a free sliding piston. Compartments A and B are filled by Fermi gases made of spin 1/2 and 3/2 particles respectively. If particles in both the compartments have same mass, the ratio of equilibrium density of the gas in compartment A to that of gas in compartment B is

(a) 1 (b)
$$\frac{1}{3^{2/5}}$$
 (c) $\frac{1}{2^{2/5}}$ (d) $\frac{1}{2^{2/3}}$

Q11. What is the DC base current (approximated to nearest integer value in μA) for the following

$$n - p - n$$
 silicon transistor circuit,
given $R_1 = 75\Omega$, $R_2 = 4.0k\Omega$, $R_3 = 2.1k\Omega$, $R_4 = 2.6k\Omega$, $R_5 = 6.0k\Omega$,
 $R_6 = 6.8k\Omega$, $C_1 = 1\mu F$, $C_2 = 2\mu F$, $V_C = -5V \beta_{dc} = 75? R^1$
 $R5 \neq R4$
 $R6 \neq VC = R2 \neq C1$
 $K = R2 \neq C1$
 $K = R2 \neq C1$

Q12. Consider a particle confined by a potential V(x) = k |x|, where k is a positive constant. The spectrum E_n of the system, within the WKB approximation is proportional to

(a)
$$\left(n+\frac{1}{2}\right)^{3/2}$$
 (b) $\left(n+\frac{1}{2}\right)^{2/3}$ (c) $\left(n+\frac{1}{2}\right)^{1/2}$ (d) $\left(n+\frac{1}{2}\right)^{4/3}$

Q13. Consider the Hamiltonian

$$H(t) = \alpha \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} + \beta t \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & -2 \end{pmatrix}$$

The time dependent function $\beta(t) = \alpha$ for $t \le 0$ and zero for t > 0. Find $|\langle \Psi(t < 0) | \Psi(t > 0) \rangle|^2$, where $|\Psi(t < 0)\rangle$ is the normalised ground state of the system at a time t < 0 and $|\Psi(t < 0)\rangle$ is the state of the system at t > 0.

(a)
$$\frac{1}{2}(1 + \cos(2\alpha t))$$
 (b) $\frac{1}{2}(1 + \cos(\alpha t))$

8920759559, 9971585002 | <u>www.pravegaa.com</u>

(c)
$$\frac{1}{2} (1 + \sin(2\alpha t))$$
 (d) $\frac{1}{2} (1 + \sin(\alpha t))$

Q14. The function $f(x) = \cosh x$ which exists in the range $-\pi \le x \le \pi$ is periodically repeated between $x = (2m-1)\pi$ and $(2m+1)\pi$, where $m = -\infty$ to ∞ . Using Fourier series, indicate the correct relation at x = 0

(a)
$$\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{1-n^2} = \frac{1}{2} \left(\frac{\pi}{\cosh \pi} - 1 \right)$$
 (b) $\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{1-n^2} = 2 \frac{\pi}{\cosh \pi}$
(c) $\sum_{n=-\infty}^{\infty} \frac{(-1)^{-n}}{1+n^2} = 2 \frac{\pi}{\sinh \pi}$ (d) $\sum_{n=1}^{\infty} \frac{(-1)^n}{1+n^2} = \frac{1}{2} \left(\frac{\pi}{\sinh \pi} - 1 \right)$

Q15. A toy car is made from a rectangular block of mass M and four disk wheels of mass m and radii r. The car is attached to a vertical wall by a massless horizontal spring with spring constant k and constrained to move perpendicular to the wall. The coefficient of static friction between the wheel of the car and the floor is μ . The maximum amplitude of oscillations of the car above which the wheels start slipping is

(a)
$$\frac{\mu g (M + 2m) (M + 4m)}{mk}$$
 (b) $\frac{\mu g (M^2 - m^2)}{Mk}$
(c) $\frac{\mu g (M + m)^2}{2mk}$ (d) $\frac{\mu g (M + 4m) (M + 6m)}{2mk}$