CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

Chapter 1 Wave Function

Problem 1.8: Suppose you add a constant V_0 to the potential energy (by "constant" I mean independent of x as well as t). In classical mechanics this doesn't change anything, but what about quantum mechanics? Show that the wave function picks up a time-dependent phase factor: $\exp(-iV_0/\hbar)$. What effect does this have on the expectation value of a dynamical variable?

Solution:
$$i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} + V(x)\psi$$

 $i\hbar \frac{\partial \psi_0}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi_0}{\partial x^2} + (V + V_0)\psi_0$
 $i\hbar \frac{\partial \psi_0}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi_0}{\partial x^2} + V\psi_0 + V_0\psi_0$
 $\psi_0 = \psi e^{-iV_0 t/\hbar}$
 $i\hbar \frac{\partial \psi}{\partial t} e^{-\frac{iV_0 t}{\hbar}} + i\hbar\psi e^{-\frac{iV_0 t}{\hbar}} \left(-\frac{iV_0}{\hbar}\right)$
 $\left(-\frac{\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} + V\psi\right) e^{-\frac{iV_0 t}{\hbar}} + V_0 \psi e^{-\frac{iV_0 t}{\hbar}}$
 $= -\frac{\hbar^2}{2m} \frac{\partial^2 \psi_0}{\partial x^2} + (V + V_0)\psi_0$, where $\psi_0 = \psi e^{-\frac{iV_0 t}{\hbar}}$
 $\langle \psi | Q | \psi \rangle = \langle \psi_0 | Q | \psi_0 \rangle$, where Q is dynamical variable