PraVegaal Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184 Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com

Differential Equation

1. Ordinary Differential Equations (ODEs)

Prerequisite: Integral calculus
Model: If we want to solve a physics problem, we first must formulate the problem as a mathematical expression in terms of variables, functions, derivatives, and equations. Such an expression is known as a mathematical model of the given problem.

Now many physical concepts, such as velocity and acceleration, are derivatives. Hence a model is mostly an equation containing derivatives of an unknown function. Such a model is called a differential equation.

Physical System \Rightarrow Mathematical Model \Rightarrow Mathematical Solution \Rightarrow Physical
Interpretation
Some physical examples that can be modelled to a ODE:
(a) Falling stone
(b) Parachutist
(c) Out flowing water

PraVegaal Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com
(a) Vibrating mass on a spring
(b) Beats of a vibrating system
(c) Current I in an LCR circuit
(d) Deformation of a beam
(e) Pendulum
(f) Lotka-Volterra predator-prey model

Ordinary differential equation (ODE): One independent variable

An ODE is an equation that contains one or severalderivatives of an unknown function. The equation may also contain y itself, knownfunction of x (or t), and constants. For example,

$$
\begin{gathered}
y^{\prime}=\sin x \\
y^{\prime \prime}+10 y=e^{-2 x} \\
y^{\prime} y^{\prime \prime \prime}-\frac{5}{2} y^{\prime 2}=0
\end{gathered}
$$

Partial Differential Equation (PDE): More than one independent variable

$$
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}=0(\text { Two independent variables } x \text { and } y)
$$

Explicit form

$$
F\left(x, y, y^{\prime}\right)=0
$$

Example: $x^{-3} y^{\prime}-4 y^{2}=0$
Implicit form

$$
\begin{aligned}
& y^{\prime}=f(x, y) \\
& y^{\prime}=4 x^{3} y^{2}
\end{aligned}
$$

What is a Solution for ODE?

A function $y=f(x)$ is called a solution of a given ODE on some open interval $a<x<b$
(a) If $h(x)$ is defined and differentiable throughout the interval
(b) The equation becomes an identity if y and y^{\prime} are replaced with h and h^{\prime}, respectively.
(c) The curve (the graph) of h is called a solution curve.

Here, open interval $a<x<b$ means that the endpoints a and b are notregarded as points belonging to the interval. Also, $a<x<b$ includes infinite intervals $-\infty<x<b, a<x<\infty$, $-\infty<x<\infty$ (the real line) as special cases
H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016 \#: +91-89207-59559, 8076563184
Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

