1.3 Vector Components and Unit Vectors

Consider a vector $\mathbf{r}=\mathbf{x}+\mathbf{y}+\mathbf{z}$. It can be represented in terms of unit vectors as $\mathbf{r}=x \mathbf{a}_{x}+y \mathbf{a}_{y}+$ $z \mathbf{a}_{z}$ (Fig. 1.5).

(a)

(b)

Fig. 1.5 (a) The component vectors x, y, and z of vector \mathbf{r}. (b) The unit vectors of the rectangular coordinate system have unit magnitude and are directed toward increasing values of their respective variables. (c) The vector $\mathbf{R}_{P Q}$ is equal to the vector difference $\mathbf{r}_{Q}-\mathbf{r}_{P}$.

Unit vector Consider a vector, $\mathbf{r}=\mathbf{x}+\mathbf{y}+\mathbf{z}$, the unit vector is given as, $\hat{r}=\frac{\mathbf{r}}{r}$, where, $r=\sqrt{x^{2}+y^{2}+z^{2}}$

