PraVegaal Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com

Kinetic Theory of Gases

2. Gas Law for Ideal Gases

Boyle's Law

At constant temperature (T), the pressure (P) of a given mass a gas is inversely proportional to its volume (V)

$$
P \propto \frac{1}{V}
$$

Charle’s Law

At constant pressure (P) the volume of a given mass of a gas is proportional to its temperature
(T)

$$
V \propto T
$$

Avogadro's Law

PraVegaal Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com
At the same temperature and pressure, equal volume of all gases contain equal number of molecules (N).

$$
N_{1}=N_{2}
$$

Graham's Law of Diffusion

When two gases at the same pressure and temperature are allowed to diffuse into each other, the rate of diffusion (r) at each gas is inversely proportional to square root at density of gas (ρ)

$$
\frac{r_{1}}{r_{2}}=\sqrt{\frac{\rho_{2}}{\rho_{1}}}
$$

Dalton's Law of Partial Pressure: The sum of pressure exerted (P) by each gas occupying the same volume as that of the mixture ($P_{1}, P_{2}, P_{3}, \ldots$.)

$$
P=P_{1}+P_{2}+P_{3}+\ldots .
$$

Ideal Gas Equation:

Consider a sample of an Ideal gas at pressure P, volume V and temperature T the gas follows the equation

$$
P V=n R T
$$

Where n is number of molecules and R is proportionality constant known as gas constant

$$
R=8.314 \mathrm{~J} / \mathrm{mol} / \mathrm{K}
$$

Boltzmann constant K is ratio between R to Avogadro number $N_{A} k_{B}=\frac{R}{N_{A}}=\frac{8.314}{6.03 \times 10^{23}}$

$$
k_{B}=1.3 \times 10^{-23} \mathrm{~J} / \mathrm{K}
$$

Example: Find the maximum attainable temperature of ideal gas in each process given by $p=p_{0}-\alpha V^{2}$; where p_{0}, α and β are positive constants, and V is the volume of one mole of gas.

Solution:

$$
\begin{equation*}
P=P_{0}-\alpha V^{2} \tag{i}
\end{equation*}
$$

Number of mole of gas $=1$
We know

$$
\begin{align*}
& P V=n R T \Rightarrow P=\frac{R T}{V} \text { put in (i) } \\
& \frac{R T}{V}=P_{0}-\alpha V^{2} \Rightarrow T=\frac{P_{0} V}{R}-\frac{\alpha V^{3}}{R} \tag{ii}
\end{align*}
$$

PraV̄egat Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com
For T maximum, $\quad \frac{d T}{d V}=0 \Rightarrow \frac{P_{0}}{R}-\frac{3 \alpha V^{2}}{R}=0$
$V=\sqrt{\frac{P_{0}}{3 \alpha}}$ put in (ii) one will get $T_{\max }=\frac{2}{3} P_{0} \sqrt{\frac{P_{0}}{3 \alpha}}$

Example: Two thermally insulated vessel 1 and 2 are filled with air. They are connected by a short tube with a value. The volume of vessels and the pressure and temperate of air in them are $\left(\mathrm{V}_{1}, \mathrm{P}_{1}, \mathrm{~T}_{1}\right)$ and $\left(\mathrm{V}_{2}, \mathrm{P}_{2}, \mathrm{~T}_{2}\right)$ respectively. Calculate the air temperate and pressure established after opening of value if air follow Ideal gas equation.

Solution: For vessel (1) $P_{1} V_{1}=n_{1} R T_{1} \quad n_{1}=\frac{P_{1} V_{1}}{R T_{1}}$
For vessel (2) $P_{2} V_{2}=n_{2} R T_{2} \quad n_{2}=\frac{P_{2} V_{2}}{R T_{2}}$
After opening the value let pressure volume and temperature is $\mathrm{P}, \mathrm{V}, \mathrm{T}$

$$
\begin{aligned}
& P V=n R T \\
& V=V_{1}+V_{2} \\
& n=n_{1}+n_{2}=\frac{P_{1} V_{1}}{R T_{1}}+\frac{P_{2} V_{2}}{R T_{2}}
\end{aligned}
$$

Hence system is isolated then
Energy of (1) + energy of (2) = energy of composite

$$
\begin{aligned}
& \frac{3}{2} n_{1} K T_{1}+\frac{3}{2} n_{2} K T_{2}=\frac{3}{2}\left(n_{1}+n_{2}\right) K T \\
& n_{1} T_{1}+n_{2} T_{2}=\left(n_{1}+n_{2}\right) / T
\end{aligned}
$$

$T=\frac{n_{1} T_{1}+n_{2} T_{2}}{n_{1}+n_{2}}$
$=\frac{\frac{P_{1} V_{1}}{R T_{1}} T_{1}+\frac{\left(P_{2} V_{2}\right)}{R T_{2}} T_{2}}{\frac{P_{1} V_{1}}{R T_{1}}+\frac{P_{2} V_{2}}{R T_{2}}} \Rightarrow T=T_{1} T_{2} \frac{\left(P_{1} V_{1}+P_{2} V_{2}\right)}{P_{1} V_{1} T_{2}+P_{2} V_{2} T_{1}}$
$P V=n R T \quad P=\frac{n R T}{V} \quad P=\frac{P_{1} V_{1}+P_{2} V_{2}}{V_{1}+V_{2}}$

Pravegaal Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com
Example: A horizontal cylinder closed from one end is rotated with a constant angular velocity ω about a vertical axis passing through the open end of the cylinder. The outside air pressure is equal to p_{0}, the temperature to T, and the molar mass of air to M. Find the air pressure as a function of the distance r from the rotation axis. The molar mass is assumed to be independent of r.

Solution: Force equation of $d r$ element.

$$
\begin{aligned}
& d F=(d m) r \omega^{2} \quad \text { if } S \text { is cross section area then } \\
& d P=\frac{d F}{S}=\left(\frac{d m}{S}\right) r \omega^{2} \quad d m=\left(\frac{S}{r \omega^{2}}\right) d P
\end{aligned}
$$

Also we know

$$
\begin{aligned}
& P(S d r)=\left(\frac{d m}{M}\right) R T \\
& P S(d r)=\frac{R T}{M}\left(\frac{S}{r \omega^{2}}\right) d P \\
& M \omega^{2} \int_{0}^{r} r d r=R T \int_{P_{0}}^{P} \frac{d P}{P} \\
& \frac{M \omega^{2} r^{2}}{2}=R T \ln \frac{P}{P_{0}} \\
& P=P_{0} e^{\frac{M \omega^{2} r^{2}}{2 R T}}
\end{aligned}
$$

Example: Prove that $P A=\frac{1}{2} m N\left\langle v^{2}\right\rangle$ and $\langle E\rangle=\frac{2}{2} k_{B} T=k_{B} T$ in two dimension.
Solution: A molecule moving in the x direction will have momentum $m v_{i x}$ normal to face of the cube before collision

$$
\Delta P_{i x}=m v_{i x}-\left(-m v_{i x}\right)=2 m v_{i x}
$$

Force acting on the wall by molecule is $f_{i x}=\frac{n_{i} 2 m v_{i x}}{\Delta t}=\frac{n_{i} 2 m v_{i x}^{2}}{2 L}==\frac{n_{i} m v_{i x}^{2}}{L}$ Pressure exert on the wall of container by molecule $P_{i x}=\frac{m n_{i} v_{i x}^{2}}{L^{3}}$

So that pressure in the x direction expected by all group

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com

$$
P_{x}=\sum P_{i x}=\frac{m}{L^{3}} \sum n_{i} v_{i x}^{2}
$$

Average value of v^{2} is given by

$$
\left\langle v_{x}^{2}\right\rangle=\frac{\sum_{i} n_{i} v_{i x}^{2}}{\sum n_{i}}=\frac{\sum_{i=1} n_{i} v_{i x}^{2}}{n}
$$

For two dimensional system $\left\langle v_{x}^{2}\right\rangle+\left\langle v_{y}^{2}\right\rangle=\left\langle v^{2}\right\rangle$ and $\left\langle v_{x}^{2}\right\rangle=\left\langle v_{y}^{2}\right\rangle=\frac{\left\langle v^{2}\right\rangle}{2}$
So P_{x} can be written as

$$
\begin{aligned}
& P_{x}=\frac{m}{L^{2}} n\left\langle v_{x}^{2}\right\rangle, P=P_{x}=\frac{1}{2} \frac{m}{L^{2}} n\left\langle v^{2}\right\rangle \quad P=\frac{1}{2} \frac{m n\left\langle v^{2}\right\rangle}{A} \\
& P A=\frac{1}{2} m N\left\langle v^{2}\right\rangle
\end{aligned}
$$

