Pravegael Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com

Group Theory

A group is said to be finite if it has a finite number of elements. Otherwise, it is said to be infinite.
The number of elements of a finite group is called the order of the group.
Example: The finite group $S=\{1,-1, i,-i\}$ is group of order 4 under ordinary multiplication.
The group of all integers $G=\{\ldots,-2,-1,0,1,2 \ldots\}$ is an infinite group under addition.
Cyclic group: Consider a group $G=\{a, b, c \ldots\}$, which may not be finite. Suppose that all the elements of G can be created by taking the powers of an appropriately chosen element, say $a_{\text {of }}$ G. Then G is called a cyclic group, and a is called a generator of the group.

Example: Consider a finite group

$$
\begin{aligned}
& S=\{1,-1, i,-i\} \odot=\text { ordinary multiplication } \\
& (i)^{1}=i, \quad(i)^{2}=-1
\end{aligned}
$$

PraVegat Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com

$$
(i)^{3}=i, \quad(i)^{4}=1
$$

Thus, whole group is generated by taking only the positive powers of element i. The element i is a generator of the group. We may also generate the same group by taking only negative power of i. We may also generate this group by taking positive power of $-i$. The generator of a cyclic group is therefore not necessarily unique.

Consider an infinite group of even integer,

$$
\{\ldots .,-6,-4,-2,0,2,4,6, \ldots .\}
$$

in which law of composition is ordinary addition.
The group can be generated by taking integral (positive and negative) multiple of its element, which is thus a generator of the group. The element $-i$ is another generator of this group.

We observe that if ' a ' is generator of a cyclic group, then each element of the group has the form a^{p} (multiplicative notation) or $p a$ (additive notation) where p is an integer.

Order of Cyclic Group: A finite cyclic $G\left(q_{1}, q_{2}, \ldots . q_{n}\right)$ group whose generator is ' α can be represented (multiplication notation)

$$
G=\left\{a, a^{2}, a^{3}, \ldots . a^{n}\right\}
$$

If p is the smallest positive integer for which $g^{p}=e$, where e is the identity element, then p is called the order. Period or cycle of the element ' g '. If p is the order of generator of a cyclic group, i.e. $a^{p}=1$ then it is also an order of the cyclic group.
Thus, $G=\left\{1, a, a^{2}, a^{3}, \ldots . a^{n-1}\right\}$
In the example $\{1,-1, i,-i\}$, order of element $1=1 \quad \because(1)^{1}=1$
Order of element $(-1)^{2}=1=2$
Order of element $i=4 \quad \because(i)^{4}=1$
Order of element $-i=4 \quad(-i)^{4}=1$
Since i in generator and $(i)^{4}=1$, therefore the order of group is 4 .
Example: Show that $z_{n}=\{0,1,2,3,4,5,6\} \odot$ mod is cyclic group.

$$
1+1=2 \quad 3+3=6
$$

Pravegat Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com

$$
\begin{array}{ll}
1+1+1=3 & 3+3+3=2 \\
1+1+1+1=4 & 3+3+3+3=5 \\
1+1+1+1+1=5 & 3+3+3+3+3=1 \\
1+1+1+1+1+1=6 & 3+3+3+3+3+3=4 \\
1+1+1+1+1+1+1=0 & 3+3+3+3+3+3+3=0
\end{array}
$$

It turns out that $z_{n}=\{0,1,2,3,4,5,6\}$, every non zero element generates the group.
Example: $z_{6}=\{0,1,2,3,4,5\} \odot \bmod 6$ only 1 and 5 are generators.
Cyclic group are abelian.
A result
It can be shown that order p of an element of group is divisor of order of group.
If m is order of an element ' α ' of group of order n then m is divisor of n.
Example: Set $G\{a, b, c\}$
(a) What are the possible order of each element of G other than the identity?

Solution: G is group of order four, hence the possible order of a, b, c are 2 or 4 .
(b) If each of the elements a, b, c have the same order, what can it be?

Solution: If $a^{4}=e$, then group $G=\{e, a, b, c\}$ can be written as $G=\left\{e, a, a^{2}, a^{3}\right\}$
Then order of b and c must be a^{2}
Now $\left(a^{2}\right)^{2}=a^{4}=e$
order of b or $c=2$
Then all of (a, b, c) can not have order 4 on the other hand each (a, b, c) can have order of two.

$$
\begin{aligned}
& a^{2}=e \\
& b^{2}=\left(a^{2}\right)^{2}=e \\
& c^{2}=\left(a^{2}\right)^{2}=e
\end{aligned}
$$

