INTERPOLATION

Newton forward difference

Given the set of $(n+1)$ values, viz., $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$, of x and y, it is required to find $y_{n}(x)$, a polynomial of the nth degree such that y and $y_{n}(x)$ agree at the tabulated points. Let the values of x be equidistant, i.e. let

$$
x_{i}=x_{0}+i h, \quad i=0,1,2, \ldots, n
$$

Since $y_{n}(x)$ is a polynomial of the nth degree, it may be written as

$$
\left.\begin{array}{r}
y_{n}(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right) \\
+a_{3}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)+\cdots \\
+a_{n}\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n-1}\right)
\end{array}\right\}
$$

Imposing now the condition that y and $y_{n}(x)$ should agree at the set of tabulated points, we obtain

$$
a_{0}=y_{0} ; a_{1}=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}=\frac{\Delta y_{0}}{h} ; a_{2}=\frac{\Delta^{2} y_{0}}{h^{2} 2!} ; a_{3}=\frac{\Delta^{3} y_{0}}{h^{3} 3!} ; \cdots ; a_{n}=\frac{\Delta^{n} y_{0}}{h^{n} n!}
$$

Setting $x=x_{0}+p h$ and substituting for $a_{0}, a_{1}, \ldots, a_{n}$, Then

$$
\begin{aligned}
y_{n}(x)= & y_{0}+p \Delta y_{0}+\frac{p(p-1)}{2!} \Delta^{2} y_{0}+\frac{p(p-1)(p-2)}{3!} \Delta^{3} y_{0}+\cdots \\
& +\frac{p(p-1)(p-2) \ldots(p-n+1)}{n!} \Delta^{n} y_{0}
\end{aligned}
$$

which is Newton's forward difference interpolation formula and is useful for interpolation near the beginning of a set of tabular values.

Newton backward difference

Instead of assuming $y_{n}(x)$ as in above Eq., if we choose it in the form

$$
\begin{aligned}
y_{n}(x)= & a_{0}+a_{1}\left(x-x_{n}\right)+a_{2}\left(x-x_{n}\right)\left(x-x_{n-1}\right) \\
& +a_{3}\left(x-x_{n}\right)\left(x-x_{n-1}\right)\left(x-x_{n-2}\right)+\cdots \\
& +a_{n}\left(x-x_{n}\right)\left(x-x_{n-1}\right) \ldots\left(x-x_{1}\right)
\end{aligned}
$$

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR, and GRE for Physics
and then impose the condition that y and $y_{n}(x)$ should agree at the tabulated points $x_{1}, x_{n-1}, \ldots, x_{2}, x_{1}, x_{0}$, we obtain (after some simplification)

$$
y_{n}(x)=y_{n}+p \nabla y_{n}+\frac{p(p+1)}{2!} \nabla^{2} y_{n}+\cdots+\frac{p(p+1) \ldots(p+n-1)}{n!} \nabla^{n} y_{n},
$$

where $p=\left(x-x_{n}\right) / h$.
This is Newton's backward difference interpolation formula and it uses tabular values to the left of y_{n}. This formula is therefore useful for interpolation near the end of the tabular values.

Example: Find the cubic polynomial which takes the following values: $y(1)=24, y(3)=$ $120, y(5)=336$, and $y(7)=720$. Hence, or otherwise, obtain the value of $y(8)$.

Solution: We form the difference table:

x	y	Δ	Δ^{2}	Δ^{3}
1	24			
		96		
3	120		120	
		216		48
5	336		168	
		384		

7720

Here $h=2$. With $x_{0}=1$, we have $x=1+2 p$ or $p=(x-1) / 2$. Substituting this value of p, we obtain

$$
\begin{aligned}
y(x) & =24+\frac{x-1}{2}(96)+\frac{\left(\frac{x-1}{2}\right)\left(\frac{x-1}{2}-1\right)}{2}(120)+\frac{\left(\frac{x-1}{2}\right)\left(\frac{x-1}{2}-1\right)\left(\frac{x-1}{2}-2\right)}{6}(48) \\
& =x^{3}+6 x^{2}+11 x+6
\end{aligned}
$$

To determine $y(8)$, we observe that $p=7 / 2$. So

$$
y(8)=24+\frac{7}{2}(96)+\frac{(7 / 2)(7 / 2-1)}{2}(120)+\frac{(7 / 2)(7 / 2-1)(7 / 2-2)}{6}(48)=990 .
$$

PraVegat Education

Example: Find the missing term in the following table:

x	y
0	1
1	3
2	9
3	-
4	81

Explain why the result differs from $3^{3}=27$.
Solution: Since four points are given, the given data can be approximated by a third degree polynomial in x. Hence $\Delta^{4} y_{0}=0$. Substituting $\Delta=E-1$ and simplifying, we get

$$
E^{4} y_{0}-4 E^{3} y_{0}+6 E^{2} y_{0}-4 E y_{0}+y_{0}=0
$$

Since $E^{r} y_{0}=y_{r}$, the above equation becomes

$$
y_{4}-4 y_{3}+6 y_{2}-4 y_{1}+y_{0}=0 .
$$

Substituting for y_{0}, y_{1}, y_{2} and y_{4} in the above, we obtain

$$
y_{3}=31
$$

The tabulated function is 3^{x} and the exact value of $y(3)$ is 27 . The error is due to the fact that the exponential function 3^{x} is approximated by means of a polynomial in x of degree 3 .

