PraVegaal Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com

Kinetic Theory of Gases

6. Correction in Ideal Gas equation to achieve van der Waals gas

equation of state

Correction for finite size: if V is volume available for one mole of gas (volume of container). If size of molecule take into account then $(V-b)$ is volume available for real gas which is less than $V . b$ is popularly known as co volume which is dependent on the nature of gas.

Example: If V_{m} is molecular volume of real gas then prove that $\mathrm{b}=4 \mathrm{NV}_{\mathrm{m}}$ if N is total number of molecule in container.

PraVegaan Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com

Solution: The volume available to first molecule $=V$
The volume available to second molecule $=V-V_{s}$
Where V_{s} volume of exclusion i.e. around any molecule,
a spherical volume is $V_{s}=\left(\frac{4 \pi d^{3}}{3}\right)$ will be denied to every other molecule.

Volume of exclusion

$$
V_{s}=4 \pi \frac{(2 r)^{3}}{3}
$$

$$
V_{s}=8 V_{m}
$$

Volume of exclusion $V_{s}=\frac{4 \pi(2 r)^{3}}{3}$
Similarly volume available to $N^{\text {th }}$ molecule $=\mathrm{V}-(\mathrm{N}-1) \mathrm{V}$
Average volume available for each molecule
$\langle V\rangle=\frac{1}{N} \sum_{i=1}^{N} V-(i-1) V_{s}=V-\frac{N(N-1) V_{s}}{2 N}=V-\frac{N}{2} V_{s}=V-\frac{N}{2} 8 V_{m}=V-4 N V_{m}$
$(\mathrm{V}-\mathrm{b})=\mathrm{V}-4 \mathrm{NV}_{\mathrm{m}} \quad$ so $\mathrm{b}=4 \mathrm{NV}_{\mathrm{m}}$
Correction for intermolecular attraction: A molecule in the equally in all direction so that there is no resultant force on it.

But for outermost layer close to surface there will be net inward force. So whenever a molecule strikes the walls of container, the momentum exchange will be less than for Ideal gas.

There forces are cohesive in nature and proportional to number of molecule.
So for real gas change in pressure is $\frac{a}{V^{2}}$. So for real gas pressure will be $\left(P+\frac{a}{V^{2}}\right)$
So gas equation reduce to $\left(P+\frac{a}{V^{2}}\right)(V-b)=R T$
Then $P=\frac{R T}{V-b}-\frac{a}{V^{2}}$

Maxwell Equal Area

James Clerk Maxwell replaced the isotherm between a and c with a horizontal line positioned so that the areas of the two hatched regions are equal (means area of $a d b$ and $b e c$ are equal). The flat line portion of the isotherm

H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016 \#: +91-89207-59559, 8076563184
Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

PraV̄egat Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com
now corresponds to liquid-vapor equilibrium. As shown in figure.
The portions $a-d$ and $c-e$ are interpreted as metastable states of super-heated liquid and super-cooled vapor respectively. The equal area rule can be expressed as:

$$
P_{V}\left(V_{G}-V_{L}\right)=\int_{V_{L}}^{V_{G}} P d V
$$

where P_{V} is the vapor pressure (flat portion of the curve), V_{L} is the volume of the pure liquid phase at point a on the diagram, and V_{G} is the volume of the pure gas phase at point c on the diagram. The sum of these two volumes will equal the total volume V.

Example: One mole of a certain gas is contained in a vessel of volume V. At a temperature T_{1} the gas pressure is p_{1} atm and at a temperature T_{2} the pressure is p_{2} atm. Find the Van der Waals parameters for this gas.

Solution: it is given no of mole $n=1$

$$
\begin{align*}
& \left(P_{1}+\frac{a}{V^{2}}\right)(V-b)=R T_{1} \tag{i}\\
& \left(P_{2}+\frac{a}{V^{2}}\right)(V-b)=R T_{2} \tag{ii}
\end{align*}
$$

from (i) and (ii)

$$
\begin{aligned}
& a=\frac{V^{2}\left(T_{1} P_{2}-T_{2} P_{1}\right)}{\left(T_{2}-T_{1}\right)} \\
& b=V-\frac{R\left(T_{2}-T_{1}\right)}{\left(P_{2}-P_{1}\right)}
\end{aligned}
$$

