

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016 Contact: +91-89207-59559, 8076563184 Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

Tensor Analysis

9. Associated Tensors

Given a tensor, we can derive other tensors by raising or lowering indices. For example, given the tensor A_{pp_0} , by raising the index p, we obtain the tensor A^p , the dot indicating the original position of the moved index. By raising the index q also, we obtain A^{pq} . Where no confusion can arise, we shall often omit the dots; thus A^{py} can be written A^{ps} . These derived tensors can be obtained by forming inner products of the given tensor with the metric tensor g_{pq} or its conjugate g^{p4} . Thus, for example

 $A^p_{\cdot q} = g^{rp} A_{rq}, A^{pq} = g^{rp} g^{sq} A_{rs}, A^p_{\cdot rs} = g_{rq} A^{pq}_{\cdot s}, A^{qm\cdot tk}_{\cdots n} = g^{pk} g_{sn} g^{rm} A^{q\cdot st}_{\cdot r\cdot p}$

These become clear if we interpret multiplication by g'^p as meaning: let r = p (or p = r) in whatever follows and raise this index. Similarly, we interpret multiplication by r as meaning: let r = q (or q = r) in whatever follows and lower this index.

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016 Contact: +91-89207-59559, 8076563184 Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

All tensors obtained from a given fensor by forming inner products with the metric tensor and its conjugate are called associated tensors of the given tensor. For example $A^{n\pi}$ and A_N are associated tensors, the first contravariant and the second covariant components. The relation between them is given by

$$A_p = g_{
m NQ} A^{
u}$$
 or $A^F = g^{N
u} A_q$

For ractangular coordinates $g_p = 1$ if p = q, and 0 if $p \neq q$, so that $A_p = A$, which explains why no distinction was made between contravariant and covariant components of a vector in earlier chapters.