Pravegat Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

Chapter 5
 Centre of Mass and Moment of Inertia

1. Centre of Mass

Consider a system composed of N particles with each particle's mass described by m_{i}, where i is an index from $i=1$ to $i=N$. The total mass of the system is denoted by M,

$$
M=\sum_{i} m_{i}
$$

where the summation over i runs from $i=1$ to $i=N$. Such a system is displayed in figure given.

If the vector connecting the origin with the $i^{\text {th }}$ particle is \mathbf{r}_{i} then the vector defining the position of the system's center of mass is $\overrightarrow{\mathbf{R}}_{\mathrm{C} . \mathrm{M}}=\frac{1}{M} \sum_{i} m_{i} \overrightarrow{\mathbf{r}}_{i}$

Pravegaal Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016 Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com

The position of the centre of mass is defined by $R_{C M} \equiv \frac{\sum m_{i} r_{i}}{M}$
For N number of mass elements, if r_{j} is the position of the $j^{t h}$ element, and m_{j} is its mass, then the center of mass is defined as $\vec{R}=\frac{1}{M} \sum_{j=1}^{N} m_{j} \vec{r}_{j}$

Example: The position vector of three particles of mass $m_{1}=1 \mathrm{~kg}, m_{2}=2 \mathrm{~kg}$ and $m_{3}=3 \mathrm{~kg}$ are $\vec{r}_{1}=(\hat{i}+4 \hat{j}+\hat{k}) m, \quad \vec{r}_{2}=(\hat{i}+\hat{j}+\hat{k}) m$ and $\vec{r}_{3}=(2 \hat{i}-\hat{j}-2 \hat{k}) m$ respectively. Find the position vector of their centre of mass.

Solution: The position vector of COM of the three particles will be given by

$$
\vec{r}_{\text {COM }}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}+m_{3} \vec{r}_{3}}{m_{1}+m_{2}+m_{3}}
$$

Substituting the values, we get

$$
\begin{aligned}
& \vec{r}_{\text {COM }}=\frac{(1)(\hat{i}+4 \hat{j}+\hat{k})+(2)(\hat{i}+\hat{j}+\hat{k})+(3)(2 \hat{i}-\hat{j}-2 \hat{k})}{1+2+3}=\frac{9 \hat{i}+3 \hat{j}-3 \hat{k}}{6} \\
& \vec{r}_{\text {COM }}=\frac{1}{2}(3 \hat{i}+\hat{j}-\hat{k}) m
\end{aligned}
$$

Example: Four particles of mass $1 \mathrm{~kg}, 2 \mathrm{~kg}, 3 \mathrm{~kg}$ and 4 kg are placed at the four vertices A, B, C and D of a square of side 1 m . Find the position of centre of mass of the particles.

Solution: Assuming D as the origin, $D C$ as x-axis and $D A$ as y-axis, we have

$$
\begin{aligned}
& m_{1}=1 \mathrm{~kg},\left(x_{1}, y_{1}\right)=(0,1 \mathrm{~m}) \\
& m_{2}=2 \mathrm{~kg},\left(x_{2}, y_{2}\right)=(1 \mathrm{~m}, 1 \mathrm{~m}) \\
& m_{3}=3 \mathrm{~kg},\left(x_{3}, y_{3}\right)=(1 \mathrm{~m}, 0) \\
& m_{4}=4 \mathrm{~kg},\left(x_{4}, y_{4}\right)=(0,0)
\end{aligned}
$$

and co-ordinates of their COM are
$x_{C M}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}+m_{4} x_{4}}{m_{1}+m_{2}+m_{3}+m_{4}}=\frac{(1)(0)+2(1)+3(1)+4(0)}{1+2+3+4}=\frac{5}{10}=\frac{1}{2} m=0.5 m$
Similarly,
$y_{C M}=x_{C M}=\frac{m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}+m_{4} y_{4}}{m_{1}+m_{2}+m_{3}+m_{4}}=\frac{(1)(1)+2(1)+3(0)+4(0)}{1+2+3+4}=\frac{3}{10} m=0.3 \mathrm{~m}$
$\therefore \quad\left(x_{\text {СОМ }} y_{\text {СОМ }}\right)=(0.5 m, 0.3 m)$
H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

