PraVegat Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com

Chapter 3

Equation of Motion and
 Variable Mass

1. Equation of Motion

According to Newton's law of motion Force acting on a body $F=m a$
where acceleration a is given by $a=\frac{d v}{d t}=\frac{d}{d t}\left(\frac{d x}{d t}\right) \Rightarrow a=\frac{d^{2} x}{d t^{2}}$
If velocity is only function of position One can also represent acceleration as

$$
a=\frac{d}{d t}\left(\frac{d x}{d t}\right)=\frac{d v}{d t} \Rightarrow a=\frac{d v}{d x} \times \frac{d x}{d t} \Rightarrow a=v \frac{d v}{d x} \text { where } v=\frac{d x}{d t}
$$

to be used when v is a function of x only and $v=\frac{d x}{d t}, a=\frac{d^{2} x}{d t^{2}}$

PraVegaan Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com
Example: An object moving with a speed of $6.25 \mathrm{~m} / \mathrm{s}$ is decelerated at a rate given by $\frac{d v}{d t}=-k \sqrt{v}$ where $k=2.5$ and v is the instantaneous speed. Find the time taken by the object to come to rest

Solution: $\frac{d v}{d t}=-k \sqrt{v} \Rightarrow \frac{d v}{\sqrt{v}}=-k d t$
Integrating $=-\int_{0}^{t} k d t=\int_{v=6.25}^{0} v^{-\frac{1}{2}} d v \quad$ (at $t=0, v=6.25 \mathrm{~m} / \mathrm{s}$, at $t=t, v=0$)
or $=-k[t]_{0}^{t}=[2 \sqrt{v}]_{6.25}^{0} \quad$ Putting $k=2.5, t=2 \mathrm{sec}$
Example: Time and distance of an object are related as $t=\alpha x^{2}+\beta x$, here α and β are constants. The retardation is given by $k v^{n}$. Find the values of k and n.

Solution: $t=\alpha x^{2}+\beta x$
Differentiating wrt $t, \frac{d t}{d t}=\alpha \times 2 x \frac{d x}{d t}+\beta \frac{d x}{d t}$
$\Rightarrow \frac{d x}{d t}=\frac{1}{2 \alpha x+\beta}$ and $a=\frac{d^{2} x}{d t^{2}}=-\frac{2 \alpha \frac{d x}{d t}}{(2 \alpha x+\beta)^{2}}$
$\Rightarrow a=-2 \alpha v \times v^{2}=-2 \alpha v^{3}$. So $k=-2 \alpha, n=3$
Example: The acceleration experienced by a boat after the engine is cut off, is given by $\frac{d v}{d t}=-k v^{3}, k$ is a constant. If v_{0} is the magnitude of velocity at cut off, find the velocity after time t from cut off.

Solution: $\frac{d v}{d t}=-k v^{3} \Rightarrow v^{-3} d v=-k d t$

$$
\int_{v_{0}}^{v} v^{-3} d v=-\int_{0}^{t} k d t \Rightarrow-\frac{1}{2}\left(\frac{1}{v^{2}}-\frac{1}{v_{0}^{2}}\right)=-k t \Rightarrow v=\frac{v_{0}}{\sqrt{1+2 k t v_{0}^{2}}}
$$

Example: Displacement of a body is given by $s \propto t^{3}, t$ is the time elapsed
(a) Find the relation between velocity v and displacement s
(b) Find the relation between acceleration a and displacement s

Solution: (a) As $s=k t^{3}$

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com

$$
\begin{aligned}
& s=k t^{3} \Rightarrow v=\frac{d s}{d t}=3 k t^{2} \Rightarrow t=\left(\frac{v}{3 k}\right)^{1 / 2} \\
& s=k \times\left(\frac{v}{3 k}\right)^{1 / 2}=\left(\frac{1}{3 k}\right)^{1 / 2} \times v^{1 / 2} \Rightarrow v \propto s^{2}
\end{aligned}
$$

(b) $s=k t^{3} \Rightarrow v=\frac{d s}{d t}=3 k t^{2}$ and acceleration $a=\frac{d v}{d t} \Rightarrow a=6 k t \Rightarrow t=\frac{a}{6 k}$

$$
s=k t^{3} \Rightarrow s=k\left(\frac{a}{6 k}\right)^{3} \Rightarrow s=\frac{a^{3}}{216 k^{2}} \Rightarrow s \propto a^{3} \Rightarrow a \propto s^{1 / 3}
$$

Example: A particle starts from rest moves with a velocity given by $v=k t$ (here $k=2 \mathrm{~m} / \mathrm{s}^{2}$)
(a) Find the distance covered by the particle in first 3 sec .
(b) Draw distance versus time $x-t, x-v$ and $x-a$ graphs

Solution: (a) $\frac{d x}{d t}=k t \Rightarrow \int_{0}^{x} d x=\int_{0}^{t} k t d t k \int_{0}^{t} t d t \Rightarrow x=\frac{1}{2} k t^{2}=\frac{1}{2} \times 2 \times 3=9 m$
(b) $x \propto t^{2} x=k t^{2}$
$v=\frac{d s}{d t}=2 k t$

$x=k\left(\frac{v}{2 k}\right)^{2}=\frac{v^{2}}{4 k} \Rightarrow x \propto v^{2}$
$a=\frac{d v}{d t}=2 k \Rightarrow a=2 k \times x^{0}$
$a \propto x^{0}(a$ is constant $)$

Pravegaal Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com
Example: We want to find the velocity of a falling parachutist as a function of time and are particularly interested in the constant limiting velocity, v_{0}, that comes about by air drag, taken to be quadratic, $-b v^{2}$ and opposing the force of the gravitational attraction, $m g$, of the Earth on the parachutist. We choose a coordinate system in which the positive direction is downward so that the gravitational force is positive. For simplicity we assume that the parachute opens immediately, that is, at time $t=0$, where $v(t)=0$, our initial condition.
(a) Write down equation of motion
(b) Find terminal velocity v_{0}
(c) if v_{0} is terminal velocity then find the velocity after time t

Solution: (a) $m \frac{d v}{d t}=m g-b v^{2}$
where m includes the mass of the parachute.
(b) The terminal velocity, v_{0} can be found from the equation of motion as $t \rightarrow \infty$, when there is
no acceleration, $\dot{v}=0 \Rightarrow b v_{0}^{2}=m g$ or $v_{0}=\sqrt{\frac{m g}{b}}$
(c) It simplifies further work to rewrite equation (i) as

$$
\frac{m}{b} \dot{v}=v_{0}^{2}-v^{2}
$$

This equation is separable and we write it in the form
$\frac{d v}{v_{0}^{2}-v^{2}}=\frac{b}{m} d t \ldots .$. (2) Using partial fractions to write $\left(\frac{1}{v_{0}^{2}-v^{2}}=\frac{1}{2 v_{0}}\left(\frac{1}{v+v_{0}^{2}}-\frac{1}{v-v_{0}}\right)\right)$
It is straightforward to integrate both sides of equation (2) (the left-hand side from $v=0$ to v, the right-hand side from $t=0$ to t), yielding $\frac{1}{2 v_{0}} \ln \frac{v_{0}+v}{v_{0}-v}=\frac{b}{m} t$

Solving for the velocity, we have $v=\frac{e^{2 t / T}-1}{e^{2 t / T}+1} v_{0}=v_{0} \frac{\sinh (t / T)}{\cosh (t / T)}=v_{0} \tanh \frac{t}{T}$
where $T=\sqrt{m / g b}$ is the time constant governing the asymptotic approach of the velocity to its limiting value, v_{0}.

