

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

Chapter 3 Equation of Motion and Variable Mass

1. Equation of Motion

According to Newton's law of motion Force acting on a body F = ma

where acceleration
$$a$$
 is given by $a = \frac{dv}{dt} = \frac{d}{dt} \left(\frac{dx}{dt} \right) \implies a = \frac{d^2x}{dt^2}$

If velocity is only function of position One can also represent acceleration as

$$a = \frac{d}{dt} \left(\frac{dx}{dt} \right) = \frac{dv}{dt} \Rightarrow a = \frac{dv}{dx} \times \frac{dx}{dt} \Rightarrow a = v \frac{dv}{dx} \text{ where } v = \frac{dx}{dt}$$

to be used when v is a function of x only and $v = \frac{dx}{dt}$, $a = \frac{d^2x}{dt^2}$

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

Example: An object moving with a speed of 6.25 m/s is decelerated at a rate given by

 $\frac{dv}{dt} = -k\sqrt{v}$ where k = 2.5 and v is the instantaneous speed. Find the time taken by the object

to come to rest

Solution:
$$\frac{dv}{dt} = -k\sqrt{v} \Rightarrow \frac{dv}{\sqrt{v}} = -kdt$$

Integrating
$$= -\int_{0}^{t} k dt = \int_{v=6.25}^{0} v^{-\frac{1}{2}} dv$$
 (at $t = 0$, $v = 6.25 \, m/s$, at $t = t, v = 0$)

or
$$=-k[t]_0^t = [2\sqrt{v}]_{6.25}^0$$
 Putting $k = 2.5$, $t = 2\sec^2 t$

Example: Time and distance of an object are related as $t = \alpha x^2 + \beta x$, here α and β are constants. The retardation is given by kv^n . Find the values of k and n.

Solution: $t = \alpha x^2 + \beta x$

Differentiating wrt
$$t$$
, $\frac{dt}{dt} = \alpha \times 2x \frac{dx}{dt} + \beta \frac{dx}{dt}$

$$\Rightarrow \frac{dx}{dt} = \frac{1}{2\alpha x + \beta} \text{ and } a = \frac{d^2x}{dt^2} = -\frac{2\alpha \frac{dx}{dt}}{\left(2\alpha x + \beta\right)^2}$$

$$\Rightarrow a = -2\alpha v \times v^2 = -2\alpha v^3$$
. So $k = -2\alpha$, $n = 3$

Example: The acceleration experienced by a boat after the engine is cut off, is given by $\frac{dv}{dt} = -kv^3$, k is a constant. If v_0 is the magnitude of velocity at cut off, find the velocity after

time t from cut off.

Solution:
$$\frac{dv}{dt} = -kv^3 \implies v^{-3}dv = -kdt$$

$$\int_{v_0}^{v} v^{-3} dv = -\int_{0}^{t} k dt \Rightarrow -\frac{1}{2} \left(\frac{1}{v^2} - \frac{1}{v_0^2} \right) = -kt \Rightarrow v = \frac{v_0}{\sqrt{1 + 2ktv_0^2}}$$

Example: Displacement of a body is given by $s \propto t^3$, t is the time elapsed

- (a) Find the relation between velocity v and displacement s
- (b) Find the relation between acceleration a and displacement s

Solution: (a) As $s = kt^3$

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

$$s = kt^3 \Rightarrow v = \frac{ds}{dt} = 3kt^2 \Rightarrow t = \left(\frac{v}{3k}\right)^{1/2}$$

$$s = k \times \left(\frac{v}{3k}\right)^{1/2} = \left(\frac{1}{3k}\right)^{1/2} \times v^{1/2} \implies v \propto s^2$$

(b)
$$s = kt^3 \Rightarrow v = \frac{ds}{dt} = 3kt^2$$
 and acceleration $a = \frac{dv}{dt} \Rightarrow a = 6kt \Rightarrow t = \frac{a}{6k}$

$$s = kt^3 \Rightarrow s = k \left(\frac{a}{6k}\right)^3 \Rightarrow s = \frac{a^3}{216k^2} \Rightarrow s \propto a^3 \Rightarrow a \propto s^{1/3}$$

Example: A particle starts from rest moves with a velocity given by v = kt (here $k = 2m/s^2$)

- (a) Find the distance covered by the particle in first 3 sec.
- (b) Draw distance versus time x-t, x-v and x-a graphs

Solution: (a)
$$\frac{dx}{dt} = kt \Rightarrow \int_{0}^{x} dx = \int_{0}^{t} kt dt \ k \int_{0}^{t} t dt \Rightarrow x = \frac{1}{2}kt^{2} = \frac{1}{2} \times 2 \times 3 = 9 m$$

(b)
$$x \propto t^2 x = kt^2$$

$$v = \frac{ds}{dt} = 2kt$$

$$x = k \left(\frac{v}{2k}\right)^2 = \frac{v^2}{4k} \implies x \propto v^2$$

$$a = \frac{dv}{dt} = 2k \implies a = 2k \times x^0$$

$$a \propto x^0$$
 (a is constant)

3

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

Example: We want to find the velocity of a falling parachutist as a function of time and are particularly interested in the constant limiting velocity, v_0 , that comes about by air drag, taken to be quadratic, $-bv^2$ and opposing the force of the gravitational attraction, mg, of the Earth on the parachutist. We choose a coordinate system in which the positive direction is downward so that the gravitational force is positive. For simplicity we assume that the parachute opens immediately, that is, at time t=0, where v(t)=0, our initial condition.

- (a) Write down equation of motion
- (b) Find terminal velocity v_0
- (c) if v_0 is terminal velocity then find the velocity after time t

Solution: (a)
$$m \frac{dv}{dt} = mg - bv^2$$
 (i)

where m includes the mass of the parachute.

- (b) The terminal velocity, v_0 can be found from the equation of motion as $t\to\infty$, when there is no acceleration, $\dot{v}=0$ $\Rightarrow bv_0^2=mg$ or $v_0=\sqrt{\frac{mg}{b}}$
- (c) It simplifies further work to rewrite equation (i) as

$$\frac{m}{b}\dot{v} = v_0^2 - v^2$$

This equation is separable and we write it in the form

$$\frac{dv}{v_0^2 - v^2} = \frac{b}{m} dt \dots (2) \text{ Using partial fractions to write } \left(\frac{1}{v_0^2 - v^2} = \frac{1}{2v_0} \left(\frac{1}{v + v_0^2} - \frac{1}{v - v_0} \right) \right)$$

It is straightforward to integrate both sides of equation (2) (the left-hand side from v = 0 to v,

the right-hand side from
$$t=0$$
 to t), yielding $\frac{1}{2v_0} \ln \frac{v_0 + v}{v_0 - v} = \frac{b}{m}t$

Solving for the velocity, we have
$$v = \frac{e^{2t/T} - 1}{e^{2t/T} + 1}v_0 = v_0 \frac{\sinh\left(t/T\right)}{\cosh\left(t/T\right)} = v_0 \tanh\frac{t}{T}$$

where $T=\sqrt{m/gb}$ is the time constant governing the asymptotic approach of the velocity to its limiting value, v_0 .

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com