Pravegael Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184 Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com

Chapter 10 Identical Particles

1. Maxwell-Boltzmann Distribution

In statistical mechanics, the Maxwell-Boltzmann distribution describes particle speeds in gases, where the particles move freely without interacting with one another, except for very brief elastic collision in which they may exchange momentum and kinetic energy, but do not change their respective states of intermolecular excitation, as a function of the temperature of the system, the mass of the particle, and speed of the particle. Particle in this context refers to the gaseous atoms or molecules - no difference is made between the two in its development and result.

Maxwell -Boltzmann system constituent identical particles who are distinguishable in nature and there is not any restriction on no of particles which can occupy any energy level. The wave function of particle will not overlap to each other because mean separation of particles is more

Pravegaal Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com
than the thermal wavelength, which is identified by λ. (where $\lambda=\frac{h}{\sqrt{2 \pi m k_{B} T}}$ is defined as the thermal wavelength)

Suppose there are l states with energies, $E_{1}, E_{2}, E_{3} \ldots \ldots . E_{l}$ and degeneracy $g_{1}, g_{2}, g_{3} \ldots \ldots . g_{l}$. Respectively, in which the particles are distributed. If there is N numbers of distinguishable particles out of these $n_{1}, n_{2}, n_{3} \ldots \ldots . n_{l}$ particles is adjusted in energy level $E_{1}, E_{2}, E_{3} \ldots \ldots . E_{l}$ respectively. So $\sum_{i=1}^{i=l} n_{i}=N \quad \sum_{i=1}^{i=l} E_{i} n_{i}=U$.

The total nunmber of arrangements of the particles in the given distributions

$$
W=\frac{\underline{N}}{\left|n_{1}\right| n_{2}\left|n_{3} \ldots \ldots .\right| n_{l}} g_{1}^{n_{1}} g_{2}^{n_{2}} \ldots \ldots g_{l}^{n_{l}}, \quad W=N \prod_{i=1}^{i=l} \frac{g_{i}^{n_{i}}}{\frac{n_{i}}{u}}
$$

Example: Two distinguishable particles have to be adjusted in a state whose degeneracy is three
(a) How many ways the particles can be adjusted?
(b) Show all arrangement .

Solution: (a) $N=2, n=2, g=3$ and no. of microstate is $W=\frac{\left\lfloor N g^{n}\right.}{\lfloor n} 9$ ways.
(b) Total no. of arrangement for 2 distinguishable in state whose degeneracy is 3.

First level	Second level	Third level
$A B$	0	0
0	$A B$	0
0	0	$A B$
A	B	0
B	A	0
A	0	B
B	0	A
0	A	B
0	B	A

Derivation of Maxwell-Boltzmann Distribution

The Maxwell-Boltzmann distribution law for the particles in the states is

$$
n_{i}=g_{i} \exp \left(-\alpha-\beta E_{i}\right), n_{i}=g_{i}(\exp -\alpha)\left(\exp -\beta E_{i}\right)
$$

After using the values $e^{-\alpha}=\frac{N}{V}\left(\frac{h^{2}}{2 \pi m k_{B} T}\right)^{3 / 2}$ where $\beta=\frac{1}{k_{B} T}$

