Pravegat Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com

chapter 4
 Central Force and
 Kepler's System

2. Kepler's Potential

The Kepler's potential is given by $V(r)=-\frac{k}{r}$ with $k>0$ which is central potential. If Particle of mass m and angular momentum J is interact with potential, then effective potential is given by $V_{\text {effective }}=\frac{J^{2}}{2 m r^{2}}-\frac{k}{r}$.
If one will plot $V_{\text {effective }}$ against r
Analysis of $V_{\text {effective }}=\frac{J^{2}}{2 m r^{2}}-\frac{k}{r} \Rightarrow \frac{\partial V_{\text {effective }}}{\partial r}=0 \Rightarrow-\frac{J^{2}}{m r^{3}}+\frac{k}{r^{2}}=0 \Rightarrow r_{0}=\frac{J^{2}}{m k}$ $\frac{\partial^{2} V_{\text {effective }}}{\partial r^{2}}=\frac{3 J^{2}}{m r^{4}}-\frac{2 k}{r^{3}}$ the value of $\frac{\partial^{2} V_{\text {effective }}}{\partial r^{2}}$ at $r=r_{0}=\frac{J^{2}}{m k}$ is $\frac{m^{3} k^{4}}{J^{6}}>0$ which is minima of the $V_{\text {effective }}$.

Pravegaal Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com
The Analysis of $V_{\text {effective }}$ for Kepler's law
Case 1 for $r=r_{0}=\frac{J^{2}}{m k}$ total energy $E_{0}=-\frac{m k^{2}}{2 J^{2}}$ the motion of path is elliptical
Case $2 E_{0}<E<0$ the particle is bounded between turning point $a<r<b$ and the motion is equivalent to small oscillation about stable point $r=r_{0}$ and shape of orbit is elliptical in nature.

Case $3 E=0$ the particle is unbounded where $r=c$ is turning point.
Case $4 E>0$ the particle is unbounded where $r=d$ is turning point.

Equation of orbit for Kepler's

Equation of motion is given by $m \ddot{r}-m r \dot{\theta}^{2}=-\frac{k}{r^{2}}$ put $\dot{\theta}=\frac{J}{m r^{2}} \Rightarrow m \ddot{r}-\frac{J^{2}}{m r^{3}}=-\frac{k}{r^{2}}$
Equation of orbit is given by $\frac{J^{2} u^{2}}{m}\left[\frac{d^{2} u}{d \theta^{2}}+u\right]=-f\left(\frac{1}{u}\right)$

$$
\begin{aligned}
f(r)= & -\frac{k}{r^{2}}, \quad f\left(\frac{1}{u}\right)=-k u^{2} \Rightarrow \frac{J^{2} u^{2}}{m}\left[\frac{d^{2} u}{d \theta^{2}}+u\right]=+k u^{2} \Rightarrow \frac{d^{2} u}{d \theta^{2}}+u=\frac{k u^{2} m}{J^{2} u^{2}} \\
& \frac{d^{2} u}{d \theta^{2}}+\left(u-\frac{k m}{J^{2}}\right)=0 \text { put } u-\frac{k m}{J^{2}}=y \text { so } \frac{d^{2} u}{d \theta^{2}}=\frac{d^{2} y}{d \theta^{2}}
\end{aligned}
$$

The equation reduce to $\frac{d^{2} y}{d \theta^{2}}+y=0$
The solution of equation reduce to $y=A \cos \theta u-\frac{k m}{J^{2}}=A \cos \theta \Rightarrow u=\frac{k m}{J^{2}}+A \cos \theta$
$\frac{1}{r}=\frac{k m}{J^{2}}+A \cos \theta \Rightarrow \frac{\frac{J^{2}}{k m}}{r}=1+\left(\frac{A J^{2}}{k m}\right) \cos \theta$
Put $\frac{J^{2}}{k m}=l$ and $e=\frac{A J^{2}}{k m}$, then equation reduce to $\frac{l}{r}=1+e \cos \theta$, which is equation of conics where l is latus rectum and e is eccentricity.

In a central force potential which is interacting with potential $V(r)=-\frac{k}{r}$ can be any conics section depending on eccentricity e.

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016 Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com

Relationship between Energy and Eccentricity

For central potential $V(r)=-\frac{k}{r}$, the solution of orbit is $\frac{l}{r}=1+e \cos \theta$ with $l=\frac{J^{2}}{k m}$
The energy is given by $E=\frac{1}{2} m \dot{r}^{2}+\frac{J^{2}}{2 m r^{2}}-\frac{k}{r}$
The solution of orbit is $\frac{l}{r}=1+e \cos \theta$ with $l=\frac{J^{2}}{k m}$
So $\frac{-l}{r^{2}} \dot{r}=-e \sin \theta \dot{\theta}$ where $\dot{\theta}=\frac{J}{m r^{2}}$ so $\dot{r}=\frac{e J \sin \theta}{m l}$,

Figure 9

After putting the value of $\frac{l}{r}=1+e \cos \theta$ and $\dot{r}=\frac{e J \sin \theta}{m l}$ with $l=\frac{J^{2}}{k m}$ in equation of energy,
one will get $e=\sqrt{1+\frac{2 E J^{2}}{m k^{2}}}$
the condition on energy for possible nature of orbit for potential

$$
\begin{array}{lll}
E>0 & e>1 & \text { Hyperbola } \\
E=0 & e=1 & \text { Parabola } \\
E<0 & e<1 & \text { Ellipse } \\
E=-\frac{m k^{2}}{2 J^{2}} & e=0 & \text { Circle }
\end{array}
$$

