

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016 Contact: +91-89207-59559, 8076563184

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

Chapter 1 Stability Analysis and Phase Diagram

2. Stability and Instability in One Dimension

Equilibrium Point: Any potential can be function of generalized coordinate, generalized velocity and time $V \equiv V(x,x,t)$. The equilibrium point is defined where total external force on the system is zero i.e. for any co-ordinate say x is said to be equilibrium point if $\frac{\partial V}{\partial x} = 0$ at $x = x_0$

Unstable Equilibrium Point: If x_0 is maxima or (local maxima) i.e. $\frac{\partial^2 V}{\partial x^2}\Big|_{x=x_0} < 0$, then it is said to be unstable equilibrium point. Unstable equilibrium point always behaves like repulsive point. **Stable Equilibrium Point:** If x_0 is minima or (local minima) i.e. $\frac{\partial^2 V}{\partial x^2}\Big|_{x=x_0} > 0$, then it is said to be stable equilibrium point. Stable equilibrium point always behaves as an attractive point.

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016 Contact: +91-89207-59559, 8076563184

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

Example: If potential in one dimension is given by $V(x) = -\frac{x^2}{2} + \frac{x^4}{4}$ then

- (a) Find the point where potential is zero
- (b) Find the equilibrium point.
- (c) Find the stable and unstable equilibrium point
- (d) Draw phase curve i.e. V(x) vs x for given energy

Solution: (a)
$$V(x) = 0 \Rightarrow -\frac{x^2}{2} + \frac{x^4}{4} = 0 \Rightarrow x = 0, +\sqrt{2}, -\sqrt{2}$$

- (b) For equilibrium point $\frac{\partial V}{\partial x} = 0 \Rightarrow -x + x^3 = 0$. So there are three equilibrium points. $x_1 = 0$, $x_2 = 1$, $x_3 = -1$
- (c) For discussion of stability and instability, we must find, $\frac{\partial^2 V}{\partial x^2} = -1 + 3x^2$. For stable equilibrium $\frac{\partial^2 V}{\partial x^2} > 0$. At $x_2 = 1$ and $x_3 = -1$ the value of $\frac{\partial^2 V}{\partial x^2} = 2$ which is greater than 0. For unstable equilibrium point. $\frac{\partial^2 V}{\partial x^2} < 0$. At $x_1 = 0$, the value of $\frac{\partial^2 V}{\partial x^2} = -1$, which is less than 0, so it is V(x) 1 xunstable point.
- (d) V(x) vs x

2