

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016 Contact: +91-89207-59559, 8076563184 Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

Chapter 8 Canonical Ensemble (E,V,N)

4. Distribution Function of the Canonical Ensemble

The prefactor $\Omega_2(E)/\Omega(E)$ in (6) is independent of H_1 . We may hence obtain the normalization

of ρ_1 alternatively by integrating over the phase space of A_1 :

$$\rho_{1}(q(1), p(1)) = \frac{e^{-\beta H_{1}(q(1), p(1))}}{\int dq(1) dp(1) e^{-\beta H_{1}(q(1), p(1))}}, \quad \beta = \frac{1}{k_{B}T}$$

$$\rho_{1} = \frac{e^{-\beta H_{1}}}{\int dq(1) dp(1) e^{-\beta H_{1}}}, \qquad \beta = \frac{1}{k_{B}T}$$
(7)

Boltzmann Factor

The probability P_r of finding the system A_1 (which is in thermal equilibrium with the heat reservoir A_2) in a microstate r with energy E_r is given by

$$P_r = \frac{e^{-\beta E_r}}{\sum_r e^{-\beta E_r}} \text{ Boltzmann distribution}$$
(8)

when rewriting (7) in terms of P_r .

- The number of states $\Omega_2(E_2) = \Omega_2(E H_1)$ accessible to the reservoir is a rapidly increasing function of its energy.
- The number of states $\Omega_2(E_2) = \Omega_2(E H_1)$ accessible to the reservoir decreases therefore rapidly with increasing $E_1 = E - E_2$. The probability of finding states with large E_1 is accordingly also rapidly decreasing.

The exponential dependence of P_r on E_r in equation (8) expresses this fact in mathematical terms.

Example: To understand the above concepts in terms of simple numbers?

Suppose a certain number of states are accessible to A_1 and A_2 for various values of their respective energies, as given in the figure, and that the total energy of the combined system is 1007.

Q. Let A_1 be in a state r with energy $6 \cdot E_2$ is then in one of the _____ states with energy _____

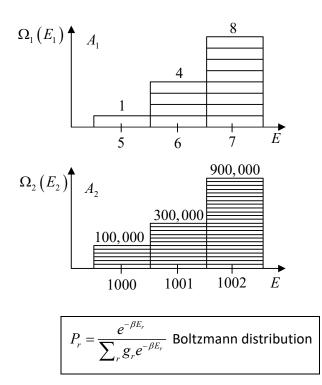
Ans. Let A_1 be in a state r with energy 6. E_2 is then in one of the 3×10^5 states with energy 1001.

Q. If A_1 is in a state γ with energy 7, the reservoir must be in one of the _____ states with energy

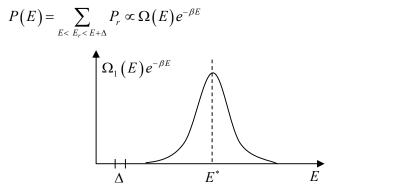
Ans. If A_1 is in a state γ with energy 7, the reservoir must be in one of the 1×10^5 states with energy 1000.

The number of realizations of states with $E_1 = 6$ the ensemble contains is hence much higher than the number of realization of state with $E_1 = 7$.

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016 Contact: +91-89207-59559, 8076563184 Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com



Canonical Ensemble: An ensemble in contact with a heat reservoir at temperature T is called a canonical ensemble, with the Boltzmann factor $\exp(-\beta E_r)$ describing the canonical distribution Energy Distribution Function: The Boltzmann distribution (8) provides the probability P_r to find an individual microstate r. There are in general many microstates in a given energy, for which



is the corresponding energy distribution function.

 $\Omega(E) = \Omega_1(E)$ is, as usual, the density of phase space.

(9)

• P(E) is rapidly decreasing for increasing energies due to the Boltzmann factor

 $\exp(-\beta E_r)$

• P(E) is rapidly decreasing for decreasing energies due to the decreasing phase space

density $\Omega(E)$.

The energy density is therefore sharply peaked. We will discuss the width of the peak, viz the energy fluctuations.