Pravegaed Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184 Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com

Introduction To Statistical Mechanics

4. Probability Calculations

Consider a system in equilibrium which is isolated so that its total energy is known to have a constant value in some range between E and $E+\delta E$. Let $\Omega(E)$ denote the total number of states of the system in this range. Suppose that there are among these states a certain number $\Omega\left(E ; y_{k}\right)$ of states for which some parameter y of the system assumes the value y_{k}. The parameter might be the magnetic moment of the system, or the pressure exerted by the system, etc. (We label the possible values which y may assume by the index k; if the possible values of k as corresponding to values of y which differ by infinitesimal amounts.)

The probability $P\left(y_{k}\right)$ that the parameter y of the system assumes the value y_{k}

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com

$$
P\left(y_{k}\right)=\frac{\Omega\left(E ; y_{k}\right)}{\Omega(E)}
$$

The mean value of the parameter y for this system

$$
\bar{y}_{k}=\frac{\sum_{k} \Omega\left(E ; y_{k}\right) y_{k}}{\Omega(E)}
$$

Here the summation over k denotes a sum over all possible values which the parameter y can assume.

Example: Consider a system consisting of three spins in equilibrium in a magnetic field H. If the total energy of this system is known to be $-\mu H$.
(a) Find the possible accessible microstates?
(b) Focus attention on one of these spins, say the first. What is the probability P_{+}that this spin points up?
(c) What is the mean magnetic moment $\bar{\mu}_{z}$ (in the $+z$ direction) of such a spin?

Solution: (a) The system is equally likely to be in any of the three states

$$
(++-) \quad(+-+) \quad(-++)
$$

(b) Since there are two cases where it points up, one has

$$
P_{+}=\frac{2}{3}
$$

(c) Since the probability of occurrence of each state of the entire system is $\frac{1}{3}$, one has simply

$$
\bar{\mu}_{e}=\frac{1}{3} \mu+\frac{1}{3} \mu+\frac{1}{3}(-\mu)=\frac{1}{3} \mu
$$

