Pravegate Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com

Chapter 10 Identical Particles

8. Bose Einstein Condensation

For a Bose-Einstein gas, the chemical potential μ is always negative and therefore, $A \geq 1$. Further let us consider spinless particles, so that $g=1$. With the decrease of temperature, A decreases and can attain the minimum value 1 . The value of A is 1 at a critical temperature T_{B} called the Bose temperature. This Bose temperature can be determined from equation $N_{e}=2 g \pi V\left(\frac{2 m k_{B} T_{B}}{h^{2}}\right)^{3 / 2} \int_{0}^{\infty} \frac{u^{1 / 2}}{A e^{u}-1} d u=\frac{g V}{\lambda^{3}} g_{3 / 2}(A)$.

By putting $A=1$. At this temperature, the number of particles in the ground states is negligible. Hence,
$N=V\left(\frac{2 \pi m k_{B} T_{B}}{h^{2}}\right)^{3 / 2} g_{3 / 2}(1) \quad$ where $\quad g_{3 / 2}(1)=1+\frac{1}{2^{3 / 2}}+\frac{1}{3^{3 / 2}}+\frac{1}{4^{3 / 2}}+\ldots \ldots \equiv \varsigma(3 / 2)$

PraV̄egaan Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com
is the Riemann zeta function whose value is 2.612 . Hence, the Bose temperature is given by

$$
T_{B}=\left(\frac{h^{2}}{2 \pi m k_{B}}\right)\left(\frac{N}{2.612 V}\right)^{2 / 3}
$$

Thus, the Bose temperature is the minimum temperature at which all the particles are in the exited states. For all known Bose-Einstein gases, value of Bose temperature is very low. For example for He^{4}, it is about 3.14 K . Through this value is very low, but there is a temperature $0 \leq$ $\mathrm{T} \leq \mathrm{T}_{\mathrm{B}}$ where Bose-Einstein gases show a specific behavior.

Bose-Einstein condensation (Bose-Einstein gas at $\mathrm{T}<\mathrm{T}_{\mathrm{B}}$)

In this temperature range $\mathrm{A}=1$ and number of particles in the excited states is

$$
N_{e}=N-N_{0}=2.612 V\left(\frac{2 \pi m k_{B} T}{h^{2}}\right)^{3 / 2}
$$

It shows that for the given values of V and T, when $N>2.612 V\left(\frac{2 \pi m k_{B} T}{h^{2}}\right)^{3 / 2}$
the excited states can occupy the number of particles given by equation and therefore, rest (N_{0}) of them would be in the ground state $(E=0)$. Hence, as long as

$$
N \leq 2.612 V\left(\frac{2 \pi m k_{B} T}{h^{2}}\right)^{3 / 2}
$$

all the particles in the gas are in the excited states $(E \neq 0)$. From equations $N_{e}=2.612 \mathrm{~V}\left(\frac{2 \pi m k_{B} T}{h^{2}}\right)^{3 / 2}$ we get the number of particles in the excited states
$N_{e}=N\left(\frac{T}{T_{B}}\right)^{3 / 2}$ and the number of particles in the ground state

$$
N_{0}=N-N_{e}=N\left[1-\left(\frac{T}{T_{B}}\right)^{3 / 2}\right]
$$

Variation of N_{e} / N and N_{0} / N vs T

Showing that a large number of particles accumulate in the ground state when $T<T_{B}$. This famous phenomenon is known as Bose-Einstein condensation. At $T=0$, all the particles occupy the ground state, and at $T=T_{B}$, all the particles occupy the excited state. For $T>T_{B}$ the particles occupy higher excited states only.
H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016 \#: +91-89207-59559, 8076563184
Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

Pravegaal Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com

Thermodynamic quantities at $T<T_{B}$:

At $T<T_{B}$, we have $\mathrm{A}=1$

- Energy $\frac{U}{N_{e}}=\frac{(3 / 2) k_{B} T\left(g V / \lambda^{3}\right) g_{5 / 2}(1)}{\left(g V / \lambda^{3}\right) g_{3 / 2}(1)}$,

$$
U=\frac{3}{2} \frac{g_{5 / 2}(1)}{g_{3 / 2}(1)} N_{e} k_{B} T=\frac{3}{2} \frac{g_{5 / 2}(1)}{g_{3 / 2}(1)} N k_{B} T\left(\frac{T}{T_{B}}\right)^{3 / 2}
$$

At $\quad T=T_{B} \quad U\left(T_{B}\right)=\frac{3}{2} \frac{g_{5 / 2}(1)}{g_{3 / 2}(1)} N k_{B} T_{B}$

- Specific heat at constant volume C_{V} is

$$
C_{V}=\left[\frac{\partial U}{\partial T}\right]_{V}=\frac{15}{4} \frac{g_{5 / 2}(1)}{g_{3 / 2}(1)} N k_{B}\left(\frac{T}{T_{B}}\right)^{3 / 2}=1.926 N k_{B}\left(\frac{T}{T_{B}}\right)^{3 / 2}
$$

- Helmholtz free energy F is

$$
F=U-S T=U-\frac{5}{3} \frac{U}{T} T=-\frac{2}{3} U
$$

- Pressure P is

$$
\begin{aligned}
& P=\frac{2}{3} \frac{U}{V}, \quad P=\frac{g_{5 / 2}(1)}{g_{3 / 2}(1)} \frac{N k_{B} T}{V}\left(\frac{T}{T_{B}}\right)^{3 / 2} \\
& \text { At } \mathrm{T}=\mathrm{T}_{B} \quad P\left(T_{B}\right)=\frac{g_{5 / 2}(1)}{g_{3 / 2}(1)} \frac{N k_{B} T_{B}}{V}
\end{aligned}
$$

Examples: (a) Write down distribution function of photon at temperature T, if average energy in each state is given by $\varepsilon=h \nu$.
(b) What is density of state of photon gas between frequency v to $v+d v$
(c) Write down expression of no of particle for photon gas at temperature T.
(d) Write down expression of average energy for photon gas at temperature T.

Solution: (a) the Bose Einstein distribution is given by $f(E)=\frac{1}{e^{(\alpha+\beta E)}-1}=\frac{1}{A e^{\beta E}-1}$ where $A=e^{\alpha}=e^{-\mu / k_{B} T}=\frac{V}{N}\left(\frac{2 \pi m k_{B} T}{h^{2}}\right)^{3 / 2}$, for boson $\mu=0$

Pravegat Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com
so $f(E)=\frac{1}{e^{\beta E}-1}$ for if average energy in each state is given by $\varepsilon=h v$ then $f(E)=\frac{1}{e^{\frac{h v}{k_{B} T}}-1}$
(b) If j is quantum number associate with frequency v then total no of frequency between v to $v+d \nu$ is same as the number of points between j to $j+d j$. The volume of spherical shell of radius j and thickness $d j$ is $4 \pi j^{2} d j$.

Hence all three component of j is positive (same as particle in box) and there are two direction of polarization so degeneracy $g=2$.

So number of standing wave $g(j) d j=(2)\left(\frac{1}{8}\right) 4 \pi j^{2} d j=\pi j^{2} d j$
It is given $j=\frac{2 L}{\lambda}=\frac{2 L v}{c}$ and $d j=\frac{2 L d v}{c} \quad g(v) d v=\frac{8 \pi L^{3} v^{2}}{c^{3}} d v$
So density of standing wave in cavity is given by $g(v) d v=\frac{g(v)}{L^{3}} d v$

$$
g(v) d v=\frac{8 \pi v^{2}}{c^{3}} d v
$$

(c) $N=\int_{0}^{\infty} f(E) g(E) d E \Rightarrow \int_{0}^{\infty} f(v) g(v) d v$

$$
N=\frac{8 \pi V}{c^{3}} \int_{0}^{\infty} \frac{v^{2} d v}{e^{\frac{h v}{k_{B} T}}-1} \text { put } x=\frac{h v}{k_{B} T} \quad N=\frac{8 \pi V}{c^{3}}\left(\frac{k_{B} T}{h c}\right)^{3} \int_{0}^{\infty} \frac{x^{2} d x}{e^{x}-1}
$$

The integral have value, $N=19.2 V\left(\frac{k_{B} T}{h c}\right)^{3}$
(d) $U=\int_{0}^{\infty} E f(E) g(E) d E \Rightarrow \int_{0}^{\infty} h v f(v) g(v) d v$

$$
\mathrm{U}=\frac{8 \pi V h}{c^{3}} \int_{0}^{\infty} \frac{v^{3} d v}{e^{\frac{h v}{k_{B} T}}-1} \text { put } x=\frac{h v}{k_{B} T}, \quad \mathrm{U}=8 \pi V c\left(\frac{k_{B} T}{h c}\right)^{4} \int_{0}^{\infty} \frac{x^{3} d x}{e^{x}-1} \quad U=\frac{8 \pi^{5} V k^{4} T^{4}}{15 c^{3} h^{3}} .
$$

Example: A system consisting of two boson particles each of which can be any one of three quantum state of respective energies $o, \varepsilon, 3 \varepsilon$ is in equilibrium at temperature T.write the expression of partition function.

Pravegaae Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com
Two boson can be distributed in three given state with their respective energy level shown in table

	Energy 0	Energy ε	Energy 3ε	Total energy
1	A A	0	0	0
2	0	AA	0	2ε
3	0	0	AA	6ε
4	A	A	0	ε
5	A	0	A	3ε
6	0	A	A	4ε

$Z=1+\exp (-\beta \varepsilon)+\exp (-2 \beta \varepsilon)+\exp (-3 \beta \varepsilon)+\exp (-4 \beta \varepsilon)+\exp (-6 \beta \varepsilon)$
Example: Calculate the ratio of the number of molecules in the lowest two rotational states in a gas of H_{2} at 50 K (take inter atomic distance $=1.05{ }^{\circ}$)
Solution: Probability for the rotational state to be found with quantum number J is given by the Boltzmann's law.

$$
P(E) \propto(2 J+1) \exp \left[-J(J+1) \hbar^{2} / 2 I_{0} k T\right]
$$

where I_{0} is the moment of inertia of the molecules, k is Boltzmann's constant, and T the Kelvin temperature. The two lowest states have $J=0$ and $J=1$
$I_{0}=M(r / 2)^{2}+M(r / 2)^{2}=\frac{1}{2} M r^{2}$, where $M=938 \mathrm{MeV} / \mathrm{c}^{2}$
$2 I_{0}=M r^{2}=938 \times\left(1.05 \times 10^{-10}\right)^{2} / c^{2}$
$\hbar c=197.3 \mathrm{MeV}-10^{-15} \mathrm{~m}$
$k T=1.38 \times 10^{-23} \times \frac{50}{1.6 \times 10^{-13}}=43.125 \times 10^{-10}$
$\frac{\hbar^{2}}{2 I_{0} k T}=\frac{\hbar^{2} c^{2}}{M c^{2} r^{2} k T}=\frac{(197.3)^{2} \times 10^{-30}}{938 \times\left(1.05 \times 10^{-10}\right)^{2} \times 43.125 \times 10^{-10}}=0.8728$
For $J=1, \frac{J(J+1) \hbar^{2}}{2 k T}=1 \times(1+1) \times 0.8728=1.7457$
For $J=0, P\left(E_{0}\right) \propto 1.0$
For $J=1, P\left(E_{0}\right) \propto(2 \times 1+1) \exp (-1.7457)=0.52 \quad \therefore P\left(E_{0}\right): P\left(E_{1}\right):: 1: 0.52$

PrāVegat Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com
Example: Consider a photon gas in equilibrium contained in a cubical box of volume $V=a^{3}$.
Calculate the number of allowed normal modes of frequency ω in the interval $d \omega$.
Solution: For stationary waves, in the x-direction
$k_{x} a=n_{x} \pi$
or $n_{x}=k_{x} a / \pi$
$d n_{x}=(a / \pi) d k_{x}$
Similar expressions are obtained for y and z directions.
$d n=d n_{x} d n_{y} d n_{z}=(a / \pi)^{3} d^{3} k$

However, only the first octant of number space is physically meaningful.
Therefore,

$$
d n=(1 / 8)(a / \pi)^{3} d^{3} k
$$

Taking into account the two possible polarizations

$$
d n=\frac{2 V}{(2 \pi)^{3}} d^{3} k=\frac{2 V}{8 \pi^{3}} \cdot 4 \pi k^{2} d k
$$

But $k-\frac{\omega}{c} ; d k-d \omega / c \quad \therefore d n=\frac{V \omega^{2} d \omega}{\pi^{2} c^{2}}$
Example: Assuming that the moment of inertia of the H_{2} molecule is $4.64 \times 10^{-48} \mathrm{~kg}-\mathrm{m}^{2}$, find the relative population of the $J=0,1,2$ and 3 rotational states at $400 K$.

Solution: $p\left(E_{J}\right)=(2 j+1) e^{\frac{-J(J+1) \hbar^{2}}{2 l_{0} k T}}$
The factor $\frac{\hbar^{2}}{2 I_{0} k}=\frac{\left(1.055 \times 10^{-34}\right)^{2}}{2 \times 4.64 \times 10^{-48} \times 1.38 \times 10^{-23} \mathrm{~J}}=86.9$
$p\left(E_{0}\right)=1$
$p\left(E_{1}\right)=3 e^{-2 \times 86.9 / 400}=1.942$
$p\left(E_{2}\right)=5 e^{-6 \times 86.9 / 400}=1.358$
$p\left(E_{3}\right)=7 e^{-12 \times 86.9 / 400}=0.516$

Pravegat Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com
Example: Calculate the relative numbers of hydrogen atoms in the chromospheres with the principal quantum numbers $n=1,2,3$ and 4 at temperature $6,000 \mathrm{~K}$.

Solution: For Boltzmann statistics $p(E) \propto e^{-E / k T}$, therefore, $\frac{p\left(E_{n}\right)}{p\left(E_{1}\right)}=e^{-\left(E_{n}-E_{1}\right) / k T}$
In hydrogen atom, if the ground state energy $E_{1}=0$, then $E_{2}=10.2, E_{3}=12.09$ and
$E_{4}=12.75 \mathrm{eV}$
The factor $k T=8.625 \times 10^{-5} \times 6000=0.5175$
$P\left(E_{2}\right) / P\left(E_{1}\right)=e^{-10.2 / 0.5175}=2.75 \times 10^{-9}$
$P\left(E_{3}\right) / P\left(E_{1}\right)=e^{-12.09 / 0.5175}=1.4 \times 10^{-10}$
$P\left(E_{4}\right) / P\left(E_{1}\right)=e^{-12.75 / 0.5175}=1.99 \times 10^{-11}$
$P\left(E_{1}\right): P\left(E_{2}\right): P\left(E_{3}\right):: 1: 2.8 \times 10^{-9}: 1.4 \times 10^{-10}: 2.0 \times 10^{-11}$
Example: Calculate the probability that an allowed state is occupied if it lies above the Fermi level by $k_{B} T$, by $5 k_{B} T$, by $10 k_{B} T$.

Solution: $p(E)=\frac{1}{e^{\left(E-E_{F}\right) / k T}+1}$
$E-E_{F}=k T, p(E)=\frac{1}{e+1}=0.269$
$E-E_{F}=5 k T, p(E)=\frac{1}{e^{5}+1}=6.69 \times 10^{-3}$
$E-E_{F}=10 k T, p(E)=\frac{1}{e^{10}+1}=4.54 \times 10^{-5}$
Example: The probability for occupying the Fermi level $P_{F}=1 / 2$. If the probability for occupying a level ΔE above E_{F} is P_{+}and that for a level ΔE below E_{F} is P_{-}, then show that for $\frac{\Delta E}{k_{B} T}<1$, P_{F} is the mean of P_{+}and P_{-}
Solution: $P_{+}=\frac{1}{e^{\left(E-E_{F}\right) / k T}+1}=\frac{1}{e^{\Delta / k T}+1} \approx \frac{1}{2+\Delta / k T}=\frac{1}{2}(1-\Delta / 2 k T)$
$P_{-}=\frac{1}{2}(1+\Delta / 2 k T)$
$\therefore \frac{P_{+}+P_{-}}{2}=\frac{1}{2}=P_{F}$

PraVegaan Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com
Example: Find the number of ways in which two particles can be distributed in six states if
(a) the particles are distinguishable
(b) the particles are indistinguishable and obey Bose-Einstein statistics
(c) the particles are indistinguishable and only one particle can occupy any one state

Solution: (a) For n states, the number of ways is $N=n^{2}$. Therefore, for $n=6$ states $N=36$
(b) For n states, the number of ways is $N=n^{2}-(n-1)$ or $n^{2}-n+1$. Therefore, for $n=6, N=31$
(c) For n states, $N=n^{2}-n+1-n$ or $n^{2}-2 n+1$. Therefore, for $n=6, N=25$

Example: From observations on the intensities of lines in the optical spectrum of nitrogen in a flame the population of various vibrationally excited molecules relative to the ground state is found as follows:

v	0	1	2	3
N_{v} / N_{0}	1.000	0.210	0.043	0.009

Show that the gas is a thermodynamic equilibrium in the flame and calculate the temperature of the gas $\left(\theta_{v}=3350 \mathrm{~K}\right)$

Solution: If the gas is in equilibrium, the number of particles in a vibrational state is

$$
N_{v}=N_{0} \exp \left(-\frac{h v}{k T}\right)=N_{0} \exp \left(-\frac{\theta}{T}\right)
$$

The ratios, $\frac{N_{0}}{N_{1}}=4.7619, \frac{N_{1}}{N_{2}}=4.8837, \frac{N_{2}}{N_{3}}=4.7778$ are seen to be constant at 4.8078 . Thus, the ratio $\frac{N_{v}}{N_{v+1}}$ is constant equal to 4.81 , showing the gas to be in equilibrium at a temperature

$$
T=3350 /(\ln 4.81) \approx 2130 K
$$

PraVegate Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com
Example: A system has non-degenerate energy levels with energy $E=\left(n+\frac{1}{2}\right) \hbar \omega$, where $\hbar \omega=8.625 \times 10^{-5} \mathrm{eV}$ and $n=0,1,2,3, \ldots .$. Calculate the probability that the system is in the $n=10$ state if it is in contact with a heat bath at room temperature $(T=300 K)$. What will be the probability for the limiting cases of very low temperature and very high temperature?

Solution: $P(n, T)=\frac{e^{-\frac{\left(n+\frac{1}{2}\right) \hbar \omega}{k T}}}{\sum_{n=0}^{\infty} e^{-\frac{\left(n+\frac{1}{2}\right) \hbar \omega}{k T}}}=\frac{e^{-\left(n+\frac{1}{2}\right) \hbar \omega / k T}}{e^{-\frac{1}{2} \hbar \omega / k T} \sum_{n=1}^{\infty} e^{n \hbar \omega / k T}}$
$=\frac{e^{-n \hbar \omega / k T}}{\frac{e^{-\hbar \omega / k T}}{1-e^{-\hbar \omega / k T}}}=\frac{e^{-n \hbar \omega / k T}}{\frac{1}{e^{\hbar \omega / k T}-1}}=e^{-n \hbar \omega / k T}\left(e^{\hbar \omega / k T}-1\right)$
Substitute $n=10, \frac{\hbar \omega}{k}=\frac{8.625 \times 10^{-5}}{\left(1.38 \times 10^{-23} / 1.6 \times 10^{-19}\right)}=1.0$
$P(10,300)=3.2 \times 10^{-3}$
In the limit $T \rightarrow 0$, the state $n=0$ alone is populated so that $n=10$ state is unpopulated. In the limit $T \rightarrow \infty$, probability for $n=10$ again goes to zero, as higher states which are numerous, are likely to be populated.

