

Chapter 10 Identical Particles

8. Bose Einstein Condensation

For a Bose-Einstein gas, the chemical potential μ is always negative and therefore, $A \ge 1$. Further let us consider spinless particles, so that g = 1. With the decrease of temperature, A decreases and can attain the minimum value 1. The value of A is 1 at a critical temperature T_B called the Bose temperature. This Bose temperature can be determined from equation

$$N_e = 2g\pi V \left(\frac{2mk_B T_B}{h^2}\right)^{3/2} \int_0^\infty \frac{u^{1/2}}{Ae^u - 1} du = \frac{gV}{\lambda^3} g_{3/2}(A).$$

By putting A = 1. At this temperature, the number of particles in the ground states is negligible. Hence,

$$N = V \left(\frac{2\pi n k_B T_B}{h^2}\right)^{3/2} g_{3/2}(1) \quad \text{where} \quad g_{3/2}(1) = 1 + \frac{1}{2^{3/2}} + \frac{1}{3^{3/2}} + \frac{1}{4^{3/2}} + \dots = \varsigma(3/2)$$

is the Riemann zeta function whose value is 2.612. Hence, the Bose temperature is given by

$$T_B = \left(\frac{h^2}{2\pi m k_B}\right) \left(\frac{N}{2.612V}\right)^{2/3}$$

Thus, the Bose temperature is the minimum temperature at which all the particles are in the exited states. For all known Bose-Einstein gases, value of Bose temperature is very low. For example for He⁴, it is about 3.14 K. Through this value is very low, but there is a temperature $0 \le$ $T \leq T_B$ where Bose-Einstein gases show a specific behavior.

Bose-Einstein condensation (Bose-Einstein gas at $T < T_B$)

In this temperature range A = 1 and number of particles in the excited states is

$$N_e = N - N_0 = 2.612 V \left(\frac{2\pi m k_B T}{h^2}\right)^{3/2}$$

It shows that for the given values of V and T, when $N > 2.612V \left(\frac{2\pi m k_B T}{h^2}\right)^{3/2}$

the excited states can occupy the number of particles given by equation and therefore, rest (N_0) of them would be in the ground state (E = 0). Hence, as long as

$$N \le 2.612 V \left(\frac{2\pi m k_B T}{h^2}\right)^{3/2}$$

all the particles in the gas are in the excited states $(E \neq 0)$. From equations $N_e = 2.612V \left(\frac{2\pi m k_B T}{h^2}\right)^{3/2}$ we get the number of particles in the excited states 1.0 ↑ $N_e = N \left(\frac{T}{T_e}\right)^{3/2}$ and the number of particles in the ground state N/N N°/N $N_0 = N - N_e = N \left[1 - \left(\frac{T}{T_B} \right)^{3/2} \right]$ 0.63 1.0 Variation of N_e / N and N_0 / N vs T

Showing that a large number of particles accumulate in the ground state when $T < T_{R}$. This famous phenomenon is known as **Bose-Einstein condensation**. At T = 0, all the particles occupy the ground state, and at $T = T_B$, all the particles occupy the excited state. For $T > T_B$ the particles occupy higher excited states only.

2

Thermodynamic quantities at $T < T_{_B}$:

At $T < T_B$, we have A = 1

• Energy
$$\frac{U}{N_e} = \frac{(3/2)k_B T (gV/\lambda^3)g_{5/2}(1)}{(gV/\lambda^3)g_{3/2}(1)}$$
,
 $U = \frac{3}{2} \frac{g_{5/2}(1)}{g_{3/2}(1)} N_e k_B T = \frac{3}{2} \frac{g_{5/2}(1)}{g_{3/2}(1)} N k_B T \left(\frac{T}{T_B}\right)^{3/2}$

At $T = T_B$ $U(T_B) = \frac{3}{2} \frac{g_{5/2}(1)}{g_{3/2}(1)} N k_B T_B$

• Specific heat at constant volume C_V is

$$C_{V} = \left[\frac{\partial U}{\partial T}\right]_{V} = \frac{15}{4} \frac{g_{5/2}(1)}{g_{3/2}(1)} N k_{B} \left(\frac{T}{T_{B}}\right)^{3/2} = 1.926 N k_{B} \left(\frac{T}{T_{B}}\right)^{3/2}$$

• Helmholtz free energy F is

$$F = U - ST = U - \frac{5}{3}\frac{U}{T}T = -\frac{2}{3}U$$

• Pressure P is

$$P = \frac{2}{3} \frac{U}{V} , \quad P = \frac{g_{5/2}(1)}{g_{3/2}(1)} \frac{Nk_B T}{V} \left(\frac{T}{T_B}\right)^{3/2}$$

At T = T_B
$$P(T_B) = \frac{g_{5/2}(1)}{g_{3/2}(1)} \frac{Nk_B T_B}{V}$$

Examples: (a) Write down distribution function of photon at temperature T, if average energy in each state is given by $\varepsilon = hv$.

- (b) What is density of state of photon gas between frequency v to v + dv
- (c) Write down expression of no of particle for photon gas at temperature T.
- (d) Write down expression of average energy for photon gas at temperature $T\,$.

Solution: (a) the Bose Einstein distribution is given by $f(E) = \frac{1}{e^{(\alpha + \beta E)} - 1} = \frac{1}{Ae^{\beta E} - 1}$

where $A = e^{\alpha} = e^{-\mu/k_BT} = \frac{V}{N} \left(\frac{2\pi m k_B T}{h^2}\right)^{3/2}$, for boson $\mu = 0$

Pravegaa Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016 Contact: +91-89207-59559, 8076563184

Website: <u>www.pravegaa.com</u> | Email: <u>pravegaaeducation@gmail.com</u>

so
$$f(E) = \frac{1}{e^{\beta E} - 1}$$
 for if average energy in each state is given by $\varepsilon = h\nu$ then $f(E) = \frac{1}{e^{\frac{h\nu}{k_B T}} - 1}$

(b) If j is quantum number associate with frequency v then total no of frequency between v to v + dv is same as the number of points between j to j + dj. The volume of spherical shell of radius j and thickness dj is $4\pi j^2 dj$.

Hence all three component of j is positive (same as particle in box) and there are two direction of polarization so degeneracy g = 2.

So number of standing wave $g(j)dj = (2)\left(\frac{1}{8}\right)4\pi j^2 dj = \pi j^2 dj$ It is given $j = \frac{2L}{\lambda} = \frac{2Lv}{c}$ and $dj = \frac{2Ldv}{c}$ $g(v)dv = \frac{8\pi L^3 v^2}{c^3} dv$ So density of standing wave in cavity is given by $g(v)dv = \frac{g(v)}{L^3} dv$ $g(v)dv = \frac{8\pi v^2}{c^3} dv$ (c) $N = \int_0^\infty f(E)g(E)dE \implies \int_0^\infty f(v)g(v)dv$

$$N = \frac{8\pi V}{c^3} \int_0^\infty \frac{v^2 dv}{e^{\frac{hv}{k_B T}} - 1} \quad \text{put } x = \frac{hv}{k_B T} \qquad N = \frac{8\pi V}{c^3} \left(\frac{k_B T}{hc}\right)^3 \int_0^\infty \frac{x^2 dx}{e^x - 1}$$

The integral have value, $N = 19.2V \left(\frac{k_B T}{hc}\right)^3$

(d)
$$U = \int_0^\infty Ef(E)g(E)dE \implies \int_0^\infty hv f(v)g(v)dv$$

 $U = \frac{8\pi Vh}{c^3} \int_0^\infty \frac{v^3 dv}{e^{\frac{hv}{k_B T}} - 1} \text{ put } x = \frac{hv}{k_B T}, \quad U = 8\pi Vc \left(\frac{k_B T}{hc}\right)^4 \int_0^\infty \frac{x^3 dx}{e^x - 1} \qquad U = \frac{8\pi^5 Vk_B^4 T^4}{15c^3 h^3}.$

Example: A system consisting of two boson particles each of which can be any one of three quantum state of respective energies $o, \varepsilon, 3\varepsilon$ is in equilibrium at temperature T write the expression of partition function.

Two boson can be distributed in three given state with their respective energy level shown in

table

		Energy 0	Energy \mathcal{E}	Energy 3 ε	Total energy				
	1	AA	0	0	0				
	2	0	AA	0	2 <i>E</i>				
	3	0	0	AA	6 <i>E</i>				
	4	А	A	0	Е				
	5	А	0	А	3 <i>E</i>				
	6	0	А	А	4 <i>E</i>				
L e1	$evn(-2\beta \epsilon) + evn(-3\beta \epsilon) + evn(-4\beta \epsilon) + evn(-6\beta \epsilon)$								

 $Z = 1 + \exp(-\beta\varepsilon) + \exp(-2\beta\varepsilon) + \exp(-3\beta\varepsilon) + \exp(-4\beta\varepsilon) + \exp(-6\beta\varepsilon)$

Example: Calculate the ratio of the number of molecules in the lowest two rotational states in a gas of H_2 at 50 K (take inter atomic distance = 1.05 Å^0)

Solution: Probability for the rotational state to be found with quantum number J is given by the Boltzmann's law.

$$P(E) \propto (2J+1) \exp\left[-J(J+1)\hbar^2/2I_0kT\right]$$

where I_0 is the moment of inertia of the molecules, k is Boltzmann's constant, and T the Kelvin temperature. The two lowest states have J = 0 and J = 1

$$I_{0} = M (r/2)^{2} + M (r/2)^{2} = \frac{1}{2} Mr^{2}, \text{ where } M = 938MeV/c^{2}$$

$$2I_{0} = Mr^{2} = 938 \times (1.05 \times 10^{-10})^{2}/c^{2}$$

$$\hbar c = 197.3 MeV - 10^{-15} m$$

$$kT = 1.38 \times 10^{-23} \times \frac{50}{1.6 \times 10^{-13}} = 43.125 \times 10^{-10}$$

$$\frac{\hbar^{2}}{2I_{0}kT} = \frac{\hbar^{2}c^{2}}{Mc^{2}r^{2}kT} = \frac{(197.3)^{2} \times 10^{-30}}{938 \times (1.05 \times 10^{-10})^{2} \times 43.125 \times 10^{-10}} = 0.8728$$
For $J = 1, \frac{J(J+1)\hbar^{2}}{2kT} = 1 \times (1+1) \times 0.8728 = 1.7457$
For $J = 0, P(E_{0}) \propto 1.0$
For $J = 1, P(E_{0}) \propto (2 \times 1 + 1) \exp(-1.7457) = 0.52$
 $\therefore P(E_{0}) : P(E_{1}) ::1:0.52$

Example: Consider a photon gas in equilibrium contained in a cubical box of volume $V = a^3$. Calculate the number of allowed normal modes of frequency ω in the interval $d\omega$.

Solution: For stationary waves, in the *x* - direction

 $k_x a = n_x \pi$

or $n_x = k_x a / \pi$

 $dn_x = (a / \pi) dk_x$

Similar expressions are obtained for y and z directions.

$$dn = dn_x dn_y dn_z = \left(a / \pi \right)^3 d^3 k$$

However, only the first octant of number space is physically meaningful.

Therefore,

$$dn = (1/8)(a/\pi)^3 d^3k$$

Taking into account the two possible polarizations

$$dn = \frac{2V}{(2\pi)^3} d^3k = \frac{2V}{8\pi^3} \cdot 4\pi k^2 dk$$

But $k - \frac{\omega}{c}$; $dk - d\omega/c$ $\therefore dn = \frac{V\omega^2 d\omega}{\pi^2 c^2}$

Example: Assuming that the moment of inertia of the H_2 molecule is $4.64 \times 10^{-48} kg \cdot m^2$, find the relative population of the J = 0, 1, 2 and 3 rotational states at 400 K.

Solution:
$$p(E_J) = (2j+1)e^{\frac{-J(J+1)\hbar^2}{2I_0kT}}$$

The factor $\frac{\hbar^2}{2I_0k} = \frac{(1.055 \times 10^{-34})^2}{2 \times 4.64 \times 10^{-48} \times 1.38 \times 10^{-23}J} = 86.9$
 $p(E_0) = 1$
 $p(E_1) = 3e^{-2 \times 86.9/400} = 1.942$
 $p(E_2) = 5e^{-6 \times 86.9/400} = 1.358$
 $p(E_3) = 7e^{-12 \times 86.9/400} = 0.516$

Example: Calculate the relative numbers of hydrogen atoms in the chromospheres with the principal quantum numbers n = 1, 2, 3 and 4 at temperature 6,000 K.

Solution: For Boltzmann statistics $p(E) \propto e^{-E/kT}$, therefore, $\frac{p(E_n)}{p(E_1)} = e^{-(E_n - E_1)/kT}$

In hydrogen atom, if the ground state energy $E_1 = 0$, then $E_2 = 10.2$, $E_3 = 12.09$ and

 $E_{4} = 12.75 \, eV$ The factor $kT = 8.625 \times 10^{-5} \times 6000 = 0.5175$ $P(E_{2})/P(E_{1}) = e^{-10.2/0.5175} = 2.75 \times 10^{-9}$ $P(E_{3})/P(E_{1}) = e^{-12.09/0.5175} = 1.4 \times 10^{-10}$ $P(E_{4})/P(E_{1}) = e^{-12.75/0.5175} = 1.99 \times 10^{-11}$ $P(E_{1}): P(E_{2}): P(E_{3})::1: 2.8 \times 10^{-9} : 1.4 \times 10^{-10} : 2.0 \times 10^{-11}$

Example: Calculate the probability that an allowed state is occupied if it lies above the Fermi level by k_BT , by $5k_BT$, by $10k_BT$.

Solution: $p(E) = \frac{1}{e^{(E-E_F)/kT} + 1}$ $E - E_F = kT, p(E) = \frac{1}{e+1} = 0.269$ $E - E_F = 5kT, p(E) = \frac{1}{e^5 + 1} = 6.69 \times 10^{-3}$ $E - E_F = 10 kT, p(E) = \frac{1}{e^{10} + 1} = 4.54 \times 10^{-5}$ Example: The probability for occupying the Fermi level $P_F = 1/2$. If the probability for occupying a level ΔE above E_F is P_+ and that for a level ΔE below E_F is P_- , then show that for $\frac{\Delta E}{k_B T} < 1$, P_F is the mean of P_+ and P_- Solution: $P_+ = \frac{1}{e^{(E-E_F)/kT} + 1} = \frac{1}{e^{\Delta/kT} + 1} \approx \frac{1}{2 + \Delta/kT} = \frac{1}{2}(1 - \Delta/2kT)$ $P_- = \frac{1}{2}(1 + \Delta/2kT)$ $\therefore \frac{P_+ + P_-}{2} = \frac{1}{2} = P_F$ **Example:** Find the number of ways in which two particles can be distributed in six states if

- (a) the particles are distinguishable
- (b) the particles are indistinguishable and obey Bose-Einstein statistics
- (c) the particles are indistinguishable and only one particle can occupy any one state

Solution: (a) For *n* states, the number of ways is $N = n^2$. Therefore, for n = 6 states N = 36

(b) For *n* states, the number of ways is $N = n^2 - (n-1)$ or $n^2 - n + 1$. Therefore, for n = 6, N = 31

(c) For *n* states, $N = n^2 - n + 1 - n$ or $n^2 - 2n + 1$. Therefore, for n = 6, N = 25

Example: From observations on the intensities of lines in the optical spectrum of nitrogen in a flame the population of various vibrationally excited molecules relative to the ground state is found as follows:

v	0	1	2	3
N_v / N_0	1.000	0.210	0.043	0.009

Show that the gas is a thermodynamic equilibrium in the flame and calculate the temperature of the gas ($\theta_v = 3350 K$)

Solution: If the gas is in equilibrium, the number of particles in a vibrational state is

$$N_{v} = N_{0} \exp\left(-\frac{hv}{kT}\right) = N_{0} \exp\left(-\frac{\theta}{T}\right)$$

The ratios, $\frac{N_0}{N_1} = 4.7619, \frac{N_1}{N_2} = 4.8837, \frac{N_2}{N_3} = 4.7778$ are seen to be constant at 4.8078. Thus, the

ratio $\frac{N_{\rm v}}{N_{\rm v+1}}$ is constant equal to $\,4.81$, showing the gas to be in equilibrium at a temperature

$$T = 3350 / (\ln 4.81) \approx 2130 K$$

Example: A system has non-degenerate energy levels with energy $E = \left(n + \frac{1}{2}\right)\hbar\omega$, where $\hbar\omega = 8.625 \times 10^{-5} eV$ and n = 0, 1, 2, 3, ... Calculate the probability that the system is in the n = 10 state if it is in contact with a heat bath at room temperature (T = 300K). What will be the probability for the limiting cases of very low temperature and very high temperature?

Solution:
$$P(n,T) = \frac{e^{-\frac{\left(n+\frac{1}{2}\right)\hbar\omega}{kT}}}{\sum_{n=0}^{\infty} e^{-\frac{\left(n+\frac{1}{2}\right)\hbar\omega}{kT}}} = \frac{e^{-\left(n+\frac{1}{2}\right)\hbar\omega/kT}}{e^{-\frac{1}{2}\hbar\omega/kT}\sum_{n=1}^{\infty} e^{n\hbar\omega/kT}}$$

$$= \frac{e^{-n\hbar\omega/kT}}{\frac{e^{-\hbar\omega/kT}}{1-e^{-\hbar\omega/kT}}} = \frac{e^{-n\hbar\omega/kT}}{\frac{1}{e^{\hbar\omega/kT}-1}} = e^{-n\hbar\omega/kT} \left(e^{\hbar\omega/kT}-1\right)$$
Substitute $n = 10, \frac{\hbar\omega}{k} = \frac{8.625 \times 10^{-5}}{\left(1.38 \times 10^{-23} / 1.6 \times 10^{-19}\right)} = 1.0$

$$P(10,300) = 3.2 \times 10^{-3}$$

In the limit $T \to 0$, the state n = 0 alone is populated so that n = 10 state is unpopulated. In the limit $T \to \infty$, probability for n = 10 again goes to zero, as higher states which are numerous, are likely to be populated.