Section A: Q. 1 - Q. 10 Carry ONE mark each.

Q. 1 For a cubic unit cell, the dashed arrow in which of the following figures represents the direction [220]?
(A)

(B)

(C)

(D)
Q. $2 \quad$ Which of the following fields has non-zero curl?
(A) $\quad x \hat{\imath}+y \hat{\jmath}+z \hat{k}$
(B)

$$
(y+z) \hat{\imath}+(x+z) \hat{\jmath}+(x+y) \hat{k}
$$

(C)

$$
y^{2} \hat{\imath}+\left(2 x y+z^{2}\right) \hat{\jmath}+2 y z \hat{k}
$$

(D) $\quad x y \hat{\imath}+2 y z \hat{\jmath}+3 x z \hat{k}$

It is independent of pressure at fixed temperature
(B) It increases with increasing pressure at fixed temperature
(C) It isindependent of temperature
(D) It decreases with increasing temperature
Q. 4 The plot of the function $f(x)=||x|-1|$ is

Q. $5 \quad$ A system has N spins, where each spin is capable of existing in 4 possible states. The difference in entropy of disordered states (where all possible spin configurations are equally probable) and ordered states is
(A) $2(N-1) k_{\mathrm{B}} \ln 2$
(B)
$(N-1) k_{\mathrm{B}} \ln 2$
(C) $4 k_{\mathrm{B}} \ln N$
(D)
$N k_{\mathrm{B}} \ln 2$
Q. 6 Temperature (T) dependence of the total specific heat $\left(C_{\mathrm{v}}\right)$ for a two dimensional metallic solid at low temperatures is
(A)

(B)

(C)
(D)

Q. 7

For the following circuit, choose the correct waveform corresponding to the output $\operatorname{signal}\left(V_{\text {out }}\right)$. Given $V_{\mathrm{in}}=5 \sin (200 \pi t) \mathrm{V}$, forward bias voltage of the diodes $(D$ and $Z)=0.7 \mathrm{~V}$ and reverse Zener voltage $=3 \mathrm{~V}$.

(A)

(B)

(C)

(D)

If the ground state energy of a particle in an infinite potential well of width L_{1} is Q. 8 equal to the energy of the second excited state in another infinite potential well of width L_{2}, then the ratio $\frac{L_{1}}{L_{2}}$ is equal to
(A) 1
(B)
$1 / 3$
(C) $1 / \sqrt{3}$
(D)
$1 / 9$
Q. 9 In the given circuit, with an ideal op-amp for what value of $\frac{R_{1}}{R_{2}}$ the output of the amplifier $V_{\text {out }}=V_{2}-V_{1}$?
(A)
(B)

(D)

$$
3 / 2
$$

Q. 10 A projectile of mass m is moving in the vertical $x-y$ plane with the origin on the ground and y-axis pointing vertically up. Taking the gravitational potential energy to be zero on the ground, the total energy of the particle written in planar polar coordinates (r, θ) is (here g is the acceleration due to gravity)
(A)

$$
\frac{m}{2} \dot{r}^{2}+m g r \sin \theta
$$

(B)

$$
\frac{m}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)+m g r \cos \theta
$$

(C)

$$
\frac{m}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)+\cdots \hat{\sim} \hat{\sim}
$$

(D)

$$
\frac{m}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-m g r \cos \theta
$$

Section A: Q. 11 - Q. 30 Carry TWO marks each.

Q. 11 A small bar magnet is dropped through different hollow copper tubes with same length and inner diameter but with different outer diameter. The variation in the time (t) taken for the magnet to reach the bottom of the tube depends on its wall thickness (d) as
(A)

(B)
(C)

(D)

Two digital inputs A and B are given to the following circuit. For $A=1, B=0$,
Q. 12 the values of X and Y are:

(A) $\quad X=0, Y=0$
(B) $\quad X=1, Y=0$
(C)
$X=0, Y=1$
(D)
Q. 13 The Jacobian matrix for transforming from (x, y) to another orthogonal coordinates system (u, v) as shown in the figure is
(A)

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]
$$

(B)
(C)

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

(D)

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]
$$

Q. 14 A rotating disc is held in front of a plane mirror in two different orientations which are (i) angular momentum parallel to the mirror and (ii) angular momentum perpendicular to the mirror. Which of the following schematic figures correctly describes the angular momentum (solid arrow) and its mirror image (shown by dashed arrows) in the two orientations?

Q. 15

$$
\text { Inverse of the matrix }\left[\begin{array}{lll}
1 & 1 & 0 \\
2 & 3 & 0 \\
1 & 0 & 1
\end{array}\right] \text { is }
$$

(A)

$$
\left[\begin{array}{rrr}
1 & -2 & 1 \\
-1 & 3 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(B)

$$
\left[\begin{array}{rrr}
3 & -1 & 0 \\
-2 & 1 & 0 \\
-3 & 1 & 1
\end{array}\right]
$$

(C)

$$
\left[\begin{array}{rrr}
-1 & -1 & 0 \\
2 & 3 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

(D)

Q. 16 Suppose the divergence of magnetic field \vec{B} is nonzero and is given as $\vec{\nabla} \cdot \vec{B}=\mu_{0} \rho_{m}$, where μ_{0} is the permeability of vacuum and ρ_{m} is the magnetic charge density. If the corresponding magnetic current density is \vec{J}_{m}, then the curl $\vec{\nabla} \times \vec{E}$ of the electric field \vec{E} is
(A)

$$
\vec{J}_{m}-\frac{\partial \vec{B}}{\partial t}
$$

(B)

$$
\mu_{0} \vec{J}_{m}-\frac{\partial \vec{B}}{\partial t}
$$

(C)

$$
-\vec{\jmath}_{m}-\frac{\partial \vec{B}}{\partial t}
$$

(D)

$$
\text { 领到 }-\frac{\partial \vec{B}}{\partial t}
$$

Q. 17 For a thermodynamic system, the coefficient of volume expansion $\beta=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}$ and compressibility $\kappa=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}$, where V, T, and P are respectively the volume, temperature, and pressure. Censidering that $\frac{d V}{V}$ is a perfect differential, we get
(A)

$$
\left(\frac{\partial \beta}{\partial P}\right)_{T}=\left(\frac{\partial \kappa}{\partial T}\right)_{P}
$$

(B)

$$
\left(\frac{\partial \beta}{\partial T}\right)_{P}=-\left(\frac{\partial \kappa}{\partial P}\right)_{T}
$$

(C)

$$
\left(\frac{\partial \beta}{\partial P}\right)_{T}=-\left(\frac{\partial \kappa}{\partial T}\right)_{P}
$$

(D)

$$
\left(\frac{\partial \beta}{\partial T}\right)_{P}=\left(\frac{\partial \kappa}{\partial P}\right)_{T}
$$

Q. 18 A linearly polarized light of wavelength 590 nm is incident normally on the surface of a $20 \mu \mathrm{~m}$ thick quartz film. The plane of polarization makes an angle 30° with the optic axis. Refractive indices of ordinary and extraordinary waves differ by 0.0091 , resulting in a phase difference of $f \pi$ between them after transmission. The value of f (rounded off to two decimal places) and the state of polarization of the transmitted light is
(A) 0.62 and linear
(B) 0.62 and elliptical
(C) -0.38 and elliptical
(D) $\quad 0.5$ and circular
Q. 19 The phase velocity v_{p} of transverse waves on a one-dimensional crystal of atomic separation d is related to the wavevector k as

$$
v_{p}=C \frac{\sin (k d / 2)}{(k d / 2)}
$$

The group velocity of these waves is
(A)

$$
C\left[\cos (k d / 2)-\frac{\sin (k d / 2)}{(k d / 2)}\right]
$$

(B)
(C)
$C \cos (k d / 2)$
(D)

Q. 20 In a dielectric medium of relative permittivity 5, the amplitudes of the displacement current and conduction current are equal for an applied sinusoidal voltage of frequency $f=1 \mathrm{MHz}$. The value of conductivity (in $\Omega^{-1} m^{-1}$) of the medium at this frequency is
(A) $\quad 2.78 \times 10^{-4}$
(B) $\quad 2.44 \times 10^{-4}$
(C) $\quad 2.78 \times 10^{-3}$
(D)
2.44×10^{-3}
Q. $21 \quad$ For a given vector $\vec{F}=-y \hat{\imath}+z \hat{\jmath}+x^{2} \hat{k}$, the surface integral $\int_{S}(\vec{\nabla} \times \vec{F}) \cdot \hat{r} d S$ over the surface S of a hemisphere of radius R with the centre of the base at the origin is

(A) $\quad \pi R^{2}$
(B)

$$
\text { (D) } \quad-\frac{2 \pi R^{2}}{3}
$$

Q. 22 In the circuit shown, assuming the current gain $\beta=100$ and $V_{\mathrm{BE}}=0.7 \mathrm{~V}$, what will be the collector voltage V_{C} in V ?

Given: $V_{\mathrm{CC}}=15 \mathrm{~V}, R_{1}=100 \mathrm{k} \Omega, R_{2}=50 \mathrm{k} \Omega, R_{\mathrm{C}}=4.7 \mathrm{k} \Omega$, and $R_{\mathrm{E}}=3.3 \mathrm{k} \Omega$
(A) 8.9
(B)

Q. 23 A uniform stick of length l and mass m pivoted at its top end is oscillating with an angular frequency ω_{r}. Assuming small oscillations, the ratio $\omega_{\mathrm{r}} / \omega_{\mathrm{s}}$, where ω_{s} is the angular frequency of a simple pendulum of the same length, will be
(A) $\sqrt{3}$
(B)
$\sqrt{\frac{3}{2}}$
(C)
$\sqrt{2}$
(D)

$$
\frac{1}{\sqrt{3}}
$$

An oil film in air of thickness 255 nm is illuminated by white light at normal incidence. As a consequence of interference, which colour will be predominantly visible in the reflected light?

Given the refractive index of oil $=1.47$
(A)
(B)
$\operatorname{Red}(650 \mathrm{~nm})$

Blue ($\sim 450 \mathrm{~nm}$)
(C)

Green ($\sim 500 \mathrm{~nm}$)
(D)

Yellow ($\sim 560 \mathrm{~nm}$)
Q. 25 Water from a tank is flowing down through a hole at its bottom with velocity $5 \mathrm{~ms}^{-1}$. If this water falls on a flat surface kept below the hole at a distance of 0.1 m and spreads horizontally, the pressure (in kNm^{-2}) exerted on the flat surface is closest to

Given: acceleration due to gravity $=9.8 \mathrm{~ms}^{-2}$ and density of water $=1000 \mathrm{kgm}^{-3}$
(A)
13.5
(B)
27.0
(C)
17.6
(D)
6.8
(A) Normal component of both \vec{D} and \vec{P} are continuous
(B) Normal component of both \vec{D} and \vec{E} are discontinuous
(C) Normal component of \vec{D} is continuous and that of \vec{P} is discontinuous
(D) Normal component of both \vec{E} and \vec{P} are continuous
Q. 27 Consider a system of large number of particles that can be in three energy states with energies $0 \mathrm{meV}, 1 \mathrm{meV}$, and 2 meV . At temperature $T=300 \mathrm{~K}$, the mean energy of the system (in meV) is closest to

Given: Boltzmann constant $k_{\mathrm{B}}=0.086 \mathrm{meVK}^{-1}$
(A) 0.12
(B) 0.97
(C) 1.32
(D) 1.82

For the Maxwell-Boltzmann speed distribution, the ratio of the root-mean-square speed $\left(v_{\text {rms }}\right)$ and the most probable speed $\left(v_{\text {max }}\right)$ is

Given: Maxwell-Boltzmann speed distribution function for a collection of particles of mass m is

$$
f(v)=\left(\frac{m}{2 \pi k_{\mathrm{B}} T}\right)^{3 / 2} 4 \pi v^{2} \exp \left(-\frac{m v^{2}}{2 k_{\mathrm{B}} T}\right)
$$

where, v is the speed and $k_{\mathrm{B}} T$ is the thermal energy.
(A)

(B)
(C)
Q. 29 In an extrinsic p-type semiconductor, which of the following schematic diagram depicts the variation of the Fermi energy level $\left(E_{F}\right)$ with temperature (T) ?

Q. 30 A container is occupied by a fixed number of non-interacting particles. If they are obeying Fermi-Dirac, Bose-Einstein, and Maxwell-Boltzmann statistics, the pressure in the container is $P_{F D}, P_{B E}$ and $P_{M B}$, respectively. Then
(A)

$$
P_{F D}>P_{M B}>P_{B E}
$$

(B)

$$
P_{F D}>P_{M B}=P_{B E}
$$

(C)

$$
P_{F D}>P_{B E}>P_{M B}
$$

$$
\begin{equation*}
\left.P_{F D}=P_{M B}=P_{B E}\right\} \tag{D}
\end{equation*}
$$

Section B: Q. 31 - Q. 40 Carry TWO marks each.

Q. 31 The spectral energy density $u_{T}(\lambda)$ vs wavelength (λ) curve of a black body shows a peak at $\lambda=\lambda_{\text {max }}$. If the temperature of the black body is doubled, then
(A) the maximum of $u_{T}(\lambda)$ shifts to $\lambda_{\max } / 2$
(B) the maximum of $u_{T}(\lambda)$ shifts to $2 \lambda_{\max }$
(C) the area under the curve becomes 16 times the original area
(D) the area under the curve becomes 8 times the original area

A periodic function $f(x)=x^{2}$ for $-\pi<x<\pi$ is expanded in a Fourier series. Which of the following statement(s) is/are correct?
(A) Coefficientsof all the sine terms are zero
(B)

$$
\text { The first term in the series is } \frac{\pi^{2}}{3}
$$

(C) The second term in the series is $-4 \cos x$
(D) Coefficients of all the cosine terms are zero
Q. 33 The state of a harmonic oscillator is given as $\Psi=\frac{1}{\sqrt{3}} \psi_{0}-\frac{1}{\sqrt{6}} \psi_{1}+\frac{1}{\sqrt{2}} \psi_{2}$, where ψ_{0}, ψ_{1} and ψ_{2} are the normalized wave functions of ground, first excited, and second excited states, respectively. Which of the following statement(s) is/are true?

A measurement of the energy of the system yields $E=\frac{1}{2} \hbar \omega$ with non-zero probability
(B) A measurement of the energy of the system yields $E=\frac{5}{3} \hbar \omega$ with non-zero probability
(C)

Expectation value of the energy of the system $\langle E\rangle=\frac{5}{3} \hbar \omega$
(D) Expectation yalue of the energy of the system $\langle E\rangle=\frac{7}{6} \hbar \omega$
(A) Moment of inertiaf of the rod about an axis passing through the pivot is $\frac{3}{5} M L^{2}$
(B) Moment of inertia of the rod about an axis passing through the pivot is $\frac{1}{3} M L^{2}$
(C)
Q. 35 Which of the following schematic plots correctly represent(s) a first order phase transition occurring at temperature $T=T_{c}$? Here g, s, v are specific Gibbs free energy, entropy and volume, respectively.
(A)
(B)

(C)
(D)

Q. $36 \quad$ A particle $\left(p_{1}\right)$ of mass m moving with speed v collides with a stationary identical particle $\left(p_{2}\right)$. The particles bounce off each other elastically with p_{1} getting deflected by an angle $\theta=30^{\circ}$ from its original direction. Then, which of the following statement(s) is/are true after the collision?
(A)

Speed of p_{1} is $\frac{\sqrt{3}}{2} v$
(B) Kinetic energy of p_{2} is 25% of the total energy
(C) Angle between the dixections of motion of the two particles is 90°
(D) The kinetic energy of the centre of mass of p_{1} and p_{2} decreases
Q. 37 by (v is the speed of the wave)
(A)
$\frac{\partial y}{\partial x}+\frac{1}{v} \frac{\partial y}{\partial t}=0$
(B)

$$
\frac{\partial y}{\partial x}-\frac{1}{2} \frac{\partial y}{\partial t}=0
$$

(C)

$$
\frac{\partial^{2} y}{\partial x^{2}}+\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}=0
$$

(D)

$$
\frac{\partial^{2} y}{\partial x^{2}}-\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}=0
$$

Q. 38 An objective lens with half angular aperture α is illuminated with light of wavelength λ. The refractive index of the medium between the sample and the objective is n. The lateral resolving power of the optical system can be increased by

Sample
(A)
decreasing both λ and α

(B) \quad decreasing λ and increasing α
(C)
increasing both α and n
decreasing λ and increasing n
Q. 39 Which of the following statement(s) is/are true for a LC circuit with $L=25 \mathrm{mH}$ and $C=4 \mu \mathrm{~F}$?
(A) Resonance frequency is close to 503 Hz
(B) \quad The impedance at 1 kHz is 15Ω
(C) At a frequency of 200 Hz , the voltăge lags the current in the circuit
(D) At a frequency of 700 Hz , the voltage lags the current in the circuit
(B)

Kepler's second law is valid
(C) The motion is confined to a plane
(D) Kepler's third law is valid

Section C: Q. 41 - Q. 50 Carry ONE mark each.

Q. 41 The lattice constant (in \AA) of copper, which has FCC structure, is \qquad (rounded off to two decimal places).

Given: density of copper is $8.91 \mathrm{~g} \mathrm{~cm}^{-3}$ and its atomic mass is $63.55 \mathrm{~g} \mathrm{~mol}^{-1}$; Avogadro's number $=6.023 \times 10^{23} \mathrm{~mol}^{-1}$
Q. 42 Two silicon diodes are connected to a battery and two resistors as shown in the figure. The current through the battery is \qquad A (rounded off to two decimal places).

Given: The forward voltage drop across each diode $=0.7 \mathrm{~V}$
Q. 43 The absolute error in the value of $\sin \theta$ if approximated up to two terms in the Taylor's series for $\theta=60^{\circ}$ is \qquad (rounded off to three decimal places).
Q. 44 A single pendulum hanging vertically in an elevator has a time period T_{0} when the elevator is stationary. If the elevator moves dupward with an acceleration of $a=$ $0.2 g$, the time period of oscillations is T_{1} Hfere g is the acceleration due to gravity. The ratio $\frac{T_{0}}{T_{1}}$ is \qquad (rouñdẽ̛ off to two decimal places).
Q. 45 A spacecraft has speed $v_{s}=f c$ with respect to the earth, where c is the speed of sight in vacuum. An observer in the spacecraft measures the time of one complete rotation of the earth to be 48 hours. The value of f is \qquad (rounded off to two decimal places).

The sum of the x-components of unit v^{2} ectors $\dot{\hat{r}}$ and $\dot{\hat{\theta}}$ for a particle moving with angular speed $2 \mathrm{rad} \mathrm{s}^{-1}$ at angle $\theta^{2}=215^{\circ}$ is \qquad (rounded off to two decimal places)
Q. 47 Consider a spring mass system with mass 0.5 kg and spring constant $k=2 \mathrm{Nm}^{-1}$ in a viscous medium with drag coefficient $b=3 \mathrm{~kg} \mathrm{~s}^{-1}$. The additional mass required so that the motion becomes critically damped is \qquad kg (rounded off to three decimal places).

Unit vector normal to the equipotential surface of $V(x, y, z)=4 x^{2}+y^{2}+z$ at $(1,2,1)$ is given by $(a \hat{\imath}+b \hat{\jmath}+c \hat{k})$. The value of $|b|$ is \qquad (rounded off to two decimal places).

A rectangular pulse of width 0.5 cm is travelling to the right on a taut string (shown by full line in the figure) that has mass per unit length μ_{1}. The string is attached to another taut string (shown by dashed line) of mass per unitlength μ_{2}. If the tension in both the strings is the same, and the transmitted pulse has width 0.7 cm , the ratio $\mu_{1} / \mu_{2}+1 \mathrm{~s}$ \qquad (rounded off to two decimal places).

Q. $50 \quad$ An α particle with energy of 3 MeV is moving towards a nucleus of ${ }^{50} \mathrm{Sn}$. Its minimum distance of approach to the nucleus is $f \times 10^{-14} \mathrm{~m}$. The value of f is
\qquad (rounded off to one decimal place).

Section C: Q. 51 - Q. 60 Carry TWO marks each.

Q. 51 In a X-Ray tube operating at 20 kV , the ratio of the de-Broglie wavelength of the incident electrons to the shortest wavelength of the generated X-rays is \qquad (rounded off to two decimal places).

Given: e/m ratio for an electron $=1.76 \times 10^{11} \mathrm{C} \mathrm{kg}^{-1}$ and the speed of light in vacuum is $3 \times 10^{8} \mathrm{~ms}^{-1}$
Q. 52 A pointsource emitting photons of 2 eV energy and 1 W of power is kept at a distance of 1 m from a small piece of a photoelectric material of area $10^{-4} \mathrm{~m}^{2}$. If the efficiency of generation of photoelectrons is 10%, then the number of photoelectrons generated are $f \times 10^{12}$ per second. The value of f is (rounded off to two decimal places).

Given: $1 \mathrm{eV}=1.6 \times \mathrm{AO}^{-19} \mathrm{~J}$

Given: Avogadro's number $=6.023 \times 10^{23} \mathrm{mmol}^{-1}$
Q. 54 In the Thomson model of hydrogen atom, the nutclear charge is distributed uniformly oversa sphere of radius R. The average potential energy of an electron confined within this atom can be taken as $V=-\frac{e^{2}}{4 \pi \epsilon_{0} R}$. Taking the uncertainty in position to be the radius of the atom, the minimum value of R for which an electron swill be confined within the atom is estimated to be $f \times 10^{-11} \mathrm{~m}$. The valuevof f is
\qquad (rounded off to one decimal place).

Given: The uncertainty product of momentum and position is $\hbar=1 \times 10^{-34} \mathrm{Js}^{-1}$, $\mathrm{e}=1.6 \times 10^{-19}{ }^{-1} \mathrm{C}^{2}$, and $\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}$
Q. 55 The sum of the eigenvalues λ_{1} and λ_{2} of matrix $B=I+A+A^{2}$, where $A=$ $\left[\begin{array}{cc}2 & 1 \\ -0.5 & 0.5\end{array}\right]$ is \qquad (rounded off to two decimal places).
Q. $56 \quad$ A container of volume V has helium gas in it with N number of He atoms. The mean free path of these atoms is λ_{He}. Another container has argon gas with the same number of Ar atoms in volume $2 V$ with thêir mean free path being λ_{Ar}. Taking the radius of Ar atoms to be 1.5 times the radius of He atoms, the ratio $\lambda_{\mathrm{Ar}} / \lambda_{\mathrm{He}}$ is \qquad (rounded off to two decimal places).

Three frames F_{0}, F_{1} and F_{2} are in relative motion. The frame F_{0} is at rest, F_{1} is moving with velocity $v_{1} \hat{\imath}$ with respect to F_{0} and F_{2} is moving with velocity $v_{2} \hat{\imath}$ wifh respect to F_{1}. A particle is moving with velocity $v_{3} \hat{\imath}$ with respect to F_{2}. diff $v_{\mathrm{i}}=v_{2}=v_{3}=c / 2$, where c is the speed of light, the speed of the particle with respect to F_{0} is $f c$. The value of f is \qquad (rounded off to two decimal places).

A fission device explodes into two pieces of rest masses m and $0.5 m$ with no loss of energy into any other form. These masses move apart respectively with speeds $\frac{\mathrm{c}}{\sqrt{13}}$ and $\frac{\mathrm{c}}{2}$, with respect to the stationary frame. If the rest mass of the device is fm then f is \qquad (rounded off to two decimal places).
Q.59 A conducting wire AB of length m has resistance of . 6Ω. It is connected to a voltage source of 0.5 V with negligible resistance as shown in the figure. The corresponding electric and magnetic fields give Poynting vectors $\vec{S}(\vec{r})$ all around the wire. Surface integral $\int \vec{S} . d \vec{a}$ is calculated over a virtual sphere of diameter 0.2 m with its centre on the wire, as shown. The value of the integral is \qquad W (rounded off to three decimal places).

A metallic sphere of radius R is held at electrostatic potential V. If isenclosed in a concentric thin metallic shell of radius $2 R$ at potential $2 V$. If the potential at the distance $\frac{3}{2} R$ from the centre of the sphere is $f V$, then the value of f is \qquad (rounded off fo foo decimal places).

