

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

Chapter 7 Rotational Dynamics

1. Angular Momentum Due to Particle

The particle has momentum \vec{p} , then angular momentum about point O is given $\vec{L} = \vec{r} \times \vec{p}$, where \vec{r} is position vector of particle with respect to origin.

Consider motion in the x-y plane, first in the x-direction and then in the y-direction, as shown below in figure (a) and (b).

H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016 #: +91-89207-59559, 8076563184

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

The most general case involves both these motions simultaneously, as shown in above figure. Hence, $L_z=xp_v-yp_x$

As you can verify by inspection or by evaluating the cross product as follows. Using r = (x, y, 0) and $p = (p_x, p_y, 0)$, we have

$$L = r \times p = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & 0 \\ p_x & p_y & 0 \end{vmatrix} = (xp_y - yp_x)\hat{k}$$

Motion of a rigid body involving translation and rotation

Assume a sphere of mass M and radius R are rolling on a rough surface, where v_{cm} is velocity of center of mass and ω is angular velocity

Pure translation —when sphere perform pure translation motion then every point has same speed of speed of center of mass

Pure Translation

Pure Rotation – when sphere perform pure rotation about center of mass then center of mass have zero velocity and all other point have velocity $\vec{v} = \vec{\omega} \times \vec{r}$. so upper and lower points have $v = \omega R$ but in opposite direction

Rolling - when translation and rotation can be combined then sphere will rolling

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

The condition of Rolling without slipping

A rigid body such as sphere having translation motion as velocity of center of mass v_{cm} and angular velocity about center of mass is ω . The condition of rolling without slipping will achieve if $v_{cm} = \omega R$ where R is radius of rolling body.

Similarly, if acceleration of center of mass is a_{cm} and α is angular velocity of about center of mass then $a_{cm}=\alpha R$, where R is radius of rolling body.

Angular Momentum of Rigid body involve Rolling

The angular momentum About any point ${\it O}$ of rigid body of mass ${\it M}$ and radius ${\it R}$

$$\vec{L} = M(\vec{r} \times \vec{v}_{cm}) + I_{cm}\vec{\omega}$$

 $ec{\omega}$ is angular velocity about center of mass

 $I_{c.m}$ is moment of inertia about center of mass

- (a) Find the angular momentum about Center of mass $\,C\,$
- (b) Find the Angular momentum about point of contact P
- (c) Find Angular momentum about Point ${\it O}$

Solution: (a)
$$\vec{L} = M(\vec{r} \times \vec{v}_{c.m}) + I_{c.m}\vec{\omega}$$

$$\vec{r}=0 \quad \vec{L}=I_{c.m}\vec{\omega}=\frac{2}{5}MR^2\omega \ \hat{z} \quad \text{for rolling without slipping,} \ v_{c.m}=\omega R \quad \omega=\frac{v_0}{R}$$

$$\vec{L} = \frac{2}{5}Mv_0R \ \hat{z}$$

(b)
$$\vec{L} = M(\vec{r} \times \vec{v}_{c.m}) + I_{c.m}\vec{\omega}$$

$$\left|r\right|=R \text{ and angle between } \vec{r} \text{ and } v_{c.m} \text{ is } \frac{\pi}{2}\text{, } \vec{L}=MRv_o+I_{c.m}\vec{\omega}=Mv_0R\,\hat{z}+\frac{2}{5}MR^2\omega\,\,\hat{z}$$

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

for rolling without slipping, $v_{c.m} = \omega R$ $\omega = \frac{v_0}{R}$ $\vec{L} = \frac{7}{5} M v_0 R \ \hat{z}$

(c)
$$\vec{L} = M(\vec{r} \times \vec{v}_{c.m}) + I_{c.m}\vec{\omega}$$

 $\left|r\right|=r \text{ and angle between } \vec{r} \text{ and } v_{c.m} \text{ is } \theta \quad \vec{L}=Mr\sin\theta v_o\hat{z}+I_{c.m}\vec{\omega}$

$$r \sin \theta = R$$
 so $\vec{L} = Mv_0 R \hat{z} + \frac{2}{5} MR^2 \omega \hat{z}$

For rolling without slipping, $v_{c.m} = \omega R$ $\omega = \frac{v_0}{R}$ $\vec{L} = \frac{7}{5} MR v_0 \hat{z}$

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com