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10. Two-Dimensional Motion 
Oblique Collision:  

Let’s now look at the more general case of two-dimensional motion. Three-Dimensional motion 

is just more of the same, so we’ll confine ourselves to 2-D. Everything is basically the same as in 

1-D, except that there is one more momentum equation, and one more variable to solve for. This 

is best seen through an example. 

Elastic Collision in Two Dimensions 

Consider two objects A  and B  of mass 1m  and 2m  kept on the X - axis (figure). Initially, the 

object B  is at rest and A  moves towards B  with a speed 1u . If the collision is not head -on (the 

force during the collision is not along the initial velocity), the objects move along different lines. 

Suppose the object A  moves with a velocity v


 making an angle   with the X - axis and the 
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object B  moves with a velocity 2v


 making an angle   with the same axis. Also, suppose 1v


 and 

2v


 lie in X - Y  plane. Using conservation of momentum in X and Y  directions, we get  

  1 1 1 1 2 2cos cosmu m v m v      (i)  

and   1 1 2 20 sin sinm v m v      (ii)  

If the collision is elastic, the final kinetic energy is equal to the initial kinetic energy. Thus, 

  2 2 2
1 1 1 1 2 2

1 1 1

2 2 2
mu m v m v     (iii)  

We have four unknowns 1 2, ,v v   and   to describe the final motion whereas there are only three 

relations. Thus, the final motion cannot be uniquely determined with this information.  

 

 

 

 

 

Example: A billiard ball with speed v  approaches an identical stationary one. The balls bounce 

off each other elastically, in such a way that the incoming one gets deflected by an angle   (see 

figure). What are the final speeds of the balls? 

What is the angle   at which the stationary ball is deflected? 

 

 

 

 

Solution: Let fv  and fV  be the final speeds of the balls. Then conservation of ,x yp p , and E  

give, respectively. 

 cos cosf fmv mv mV    

 0 sin sinf fmv mV    

 2 2 21 1 1

2 2 2f fmv mv mV   
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We must solve these three equations for the three unknowns ,f fv V  , and  . There are various 

ways to do this. Here’s one. Eliminate   by adding the squares of the first two equations (after 

putting the fv  terms on the left-hand side) to obtain 2 2 22 cosf f fv vv v V    

Now eliminate fV  by combining this the third equation to obtain cosfv v   

The third equation then yields sinfV v   

The second equation then gives    cos sin sin sinm v m v    ; which implies cos sin  (or 

0  , which corresponds to no collision). Therefore, 090    

In other words, the balls bounce off at right angles with respect to each other. This fact is well 

known to pool players. Problem 5.19 gives another (cleaner) way to demonstrate this result. Note 

that we needed to specify one of the four quantities, , , ,f fv V   . (we chose  ), because we have 

only three equations. Intuitively, we can’t expect to solve for all four of these quantities, because 

we can imagine one ball hitting the other at various distances away from directly head-on, which 

will cause the balls to be deflected at various angles. 

Example: Two smooth spheres A  and B , or equal radius but masses m and M , are free to move 

on a horizontal table A  is projected with speed u  towards B  which is at rest. On impact, the 

line joining their centres is inclined at an angle   to the velocity of A  before impact. if e  is the 

coefficient of restitution between the spheres, find the speed with which B  begins to move. If  

A ’s path after impact is perpendicular to its path before impact, show that 2tan
eM m

M m
 



 

Solution:  
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When B  is struck by the impulse J , it begins to move in the direction of J  as shown in the 

diagram. Along the line of centre, we apply 

(a) Conservation of linear momentum, 

i.e., cosmu MV mv      (i) 

(b) Law of restitution,  

i.e.,  coseu V v      (ii) 

Solving equations, (i) and (ii), we get 

 
 

coseM m u
v

M m





 and 

 1 cose mu
V

M m





 

 Hence, 
 
 

tansin
tan

M mu

v eM m




 


 

Example: A ball of mass m  hits a floor with a speed v  making an angle of incidence   with the 

normal. The coefficient of restitution is e .  

(a) Find the speed of the reflected ball . 

(b) Find the angle of reflection of the ball. 

(c) Find the angle of reflection for elastic collision 

   

 

 

 

 

Solution: (a) Suppose the angle of reflection is   and the speed after the collision is v . The 

floor exerts a force on the ball along the normal during the collision. There is no force parallel to 

the surface. Thus, the parallel component of the velocity of the ball remains unchanged. This 

gives  

    sin sinv v      (i)  

 For the components normal to the floor,  

 The velocity of separation cosv    

 and the velocity of approach cosv   

 Hence,   cos cosv ev      (ii)  

v v  

v v   
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 From (i) and (ii),  2 2 2sin cosv v e     

 (b) Dividing equation (i) and (ii), we get 
tan

tan
e

    

 (c) For elastic collision, 1e   so that     and v v   

 Note: If collision is perfectly elastic, no energy is absorbed by the floor and hence 1e   

 So tan tan        and v v   

 Example: A small ball of mass m  collides with a rough wall having coefficient of friction   at an 

angle   with the normal to the wall. If after collision the ball moves with angle   with the normal 

to the wall and the coefficient of restitution is e  then find the reflected velocity v  of the ball just 

after collision.  

 

 

 

 

 

Solution:   cos cosmv m u Ndt      

  sin sinmv mu Ndt        

 and 
cos

cos cos
cos

v
e v eu

u

  


    

 or  sin sin cos cosmv mu mv mu         

 or  sin cos 1
sin

u
v e  


      

 

m
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