Pravegate Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com

Chapter 7
 Rotational Dynamics

2. Kinetic Energy of Rigid Body

The rigid body of mass M and radius R. The moment of inertia about center of mass is $I_{c m}$. The velocity of center of mass is $v_{c m}$ and angular velocity about center of mass is ω, then kinetic energy is $T=\frac{1}{2} M v_{c m}^{2}+\frac{1}{2} I_{c m} \omega^{2}$

Example: A sphere of mass M and radius R having velocity of center of mass v_{0}. As friction of surface is enough so that sphere Achieving condition of Rolling without Slipping. Find the kinetic energy of sphere.

Solution: $T=\frac{1}{2} M v_{c m}^{2}+\frac{1}{2} I_{c m} \omega^{2}=\frac{1}{2} M v_{0}^{2}+\frac{1}{2} \frac{2}{5} M R^{2} \omega^{2}$
Rolling without slipping, $v_{c . m}=\omega R \quad \omega=\frac{v_{0}}{R} \quad \frac{1}{2} M v_{0}^{2}+\frac{1}{2} \frac{2}{5} M R^{2} \frac{v_{0}^{2}}{R^{2}}=\frac{7}{10} M v_{0}^{2}$

Pravegaal Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com
Example: A rod of length l is pivoted at one of its end. If rod is constrained to move in $y-z$ plane, then
(a) find the total energy of system
(b) find angular frequency for small oscillation.

Solution: (a) $T=\frac{1}{2} M\left(\dot{x}^{2}+\dot{y}^{2}\right)+\frac{1}{2} I_{c m} \omega^{2}$
$x=\frac{l}{2} \sin \theta, \Rightarrow \dot{x}=\frac{l}{2} \cos \theta \dot{\theta} \quad y=\frac{l}{2} \cos \theta \Rightarrow \dot{y}=-\frac{l}{2} \sin \theta \dot{\theta}$
Kinetic energy $T=\frac{1}{2} \frac{l^{2}}{4} \dot{\theta}^{2}+\frac{1}{2} \frac{M l^{2}}{12} \dot{\theta}^{2}=\frac{M l^{2}}{6} \dot{\theta}^{2}$
Potential energy V is given by $V(\theta)=-\frac{M g l \cos \theta}{2}$
$E=T+V \Rightarrow E=\frac{1}{2}\left(\frac{M l^{2}}{3}\right) \dot{\theta}^{2}-\frac{M g l}{2} \cos \theta$
(b) Hence, energy is conserved $\frac{d E}{d t}=0 \Rightarrow E=\left(\frac{M l^{2}}{3}\right) \ddot{\theta} \ddot{\theta}+\frac{M g l}{2} \sin \theta \dot{\theta}=0 \Rightarrow\left(\frac{l}{3}\right) \ddot{\theta}+\frac{g}{2} \sin \theta=0$
for small oscillation, $\sin \theta=\theta$, so $\left(\frac{l}{3}\right) \ddot{\theta}+\frac{g}{2} \theta=0 \Rightarrow \omega=\sqrt{\frac{3 g}{2 l}}$
Example: A rod of mass m and length l is suspended from two mass less vertical springs with a spring constants k_{1} and k_{2}. If x_{1} and x_{2} be the displacements from equilibrium position of the two ends of the rod, find the kinetic energy of system.

Solution: $T=\frac{1}{2} M v_{c . m}^{2}+\frac{1}{2} I_{c . m} \omega^{2}=\frac{1}{2} m\left(\frac{\dot{x}_{1}+\dot{x}_{2}}{2}\right)^{2}+\frac{1}{2} \frac{m l^{2}}{12} \dot{\theta}^{2}$
$\sin \theta=\frac{x_{2}-x_{1}}{l}$ for small oscillation $\theta=\frac{x_{2}-x_{1}}{l} \Rightarrow \dot{\theta}=\frac{\dot{x}_{2}-\dot{x}_{1}}{l}$
(keep in mind that there is not pure rotation case)

$$
T=\frac{1}{2} m\left(\frac{\dot{x}_{1}+\dot{x}_{2}}{2}\right)^{2}+\frac{1}{2} \frac{m l^{2}}{12}\left(\frac{\dot{x}_{1}-\dot{x}_{2}}{l}\right)^{2} \Rightarrow T=\frac{m}{6}\left(\dot{x}_{1}^{2}+\dot{x}_{1} \dot{x}_{2}+\dot{x}_{2}^{2}\right)
$$

Pravegaal Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016 Contact: +91-89207-59559, 8076563184 Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com

Example: A stick of length l and mass M initially upright on a frictionless table, starts falling. The problem is to find the speed of the center of mass as a function of position.

Solution: The key lies in realizing that since there are no horizontal forces, the center of mass must fall straight down. Since we must find velocity as a function of position, it is natural to apply energy methods.

The sketch shows the stick after it has rotated through angle θ and the center of mass has fallen distance y. The total energy at rest is $E=K_{0}+U_{0}=\frac{M g l}{2}$

The kinetic energy at a later time is $K=\frac{1}{2} I_{c m} \dot{\theta}^{2}+\frac{1}{2} M \dot{y}^{2}$
 and the corresponding potential energy is $U=M g\left(\frac{l}{2}-y\right)$.

Since, there are no dissipative forces, mechanical energy is conserved and

$$
K+U=K_{0}+U_{0}=\frac{M g l}{2} .
$$

Hence, $\frac{1}{2} M \dot{y}^{2}+\frac{1}{2} I_{c m} \dot{\theta}^{2}+M g\left(\frac{l}{2}-y\right)=M g \frac{l}{2}$.
We can eliminate θ by turning to the constraint equation. From the sketch we see that $y=\frac{l}{2}(1-\cos \theta)$. Hence, $\dot{y}=\frac{l}{2} \sin \theta \dot{\theta}$ and $\dot{\theta}=\frac{2}{l \sin \theta} \dot{y}$ Since, $I_{c m}=M\left(\frac{l^{2}}{12}\right)$, we obtain

$$
\frac{1}{2} M \dot{y}^{2}+\frac{1}{2} M \frac{l^{2}}{12}\left(\frac{2}{l \sin \theta}\right)^{2} \dot{y}^{2}+M g\left(\frac{l}{2}-y\right)=M g \frac{l}{2}
$$

or $\quad \dot{y}^{2}=\frac{2 g y}{\left[1+\frac{1}{\left(3 \sin ^{2} \theta\right)}\right]} \Rightarrow \dot{y}=\left[\frac{6 g y \sin ^{2} \theta}{3 \sin ^{2} \theta+1}\right]^{1 / 2}$, where $y=\frac{l}{2}(1-\cos \theta)$

