# PraVegate Education 

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com

## Chapter 6 Linear Momentum And Energy

## 7. Spring Force

An important example of the above idea is a spring that obeys. Hooke's Law. Consider the situation shown in figure. One end of a spring is attached to a fixed vertical support and the other end to a block which can move on a horizontal table. Let $x=0$ denote the position of the block when the spring is in its natural length.


# PraVegaan Education 

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016 Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com
When the block is displaced by an amount $x$ (either compressed or elongated) a restoring force $(F)$ is applied by the spring on the block. The direction of this force $F$ is always towards its mean position $(x=0)$ and the magnitude is directly proportional to $x$ o
 $F \propto x \Rightarrow F=-k x=-\frac{d U}{d x} \Rightarrow U_{2}-U_{1}=\frac{1}{2} k\left(x_{2}^{2}-x_{1}^{2}\right)$
so potential energy of particle which is stored energy in spring is equivalent to $U=\frac{1}{2} k x^{2}$
Example: A mass $m$ is shot vertically upward from the surface of the earth with initial speed $v_{0}$.
Assuming that the only force is gravity, find its maximum altitude and the minimum value of $v_{0}$ for the mass to escape the earth completely.

Solution: The force on $m$ is $F=-\frac{G M_{e} m}{r^{2}}$.
The problem is one dimensional in the variable $r$ and it is simple to find the kinetic energy at distance $r$ by the work-energy theorem. Let the particle start at $r=R$, with initial velocity $v_{0}$.


$$
\begin{aligned}
& K(r)-K\left(R_{e}\right)=\int_{R_{e}}^{r} F(r) d r=-G M_{e} m \int_{R_{e}}^{r} \frac{d r}{r^{2}} \\
& \Rightarrow \frac{1}{2} m[v(r)]^{2}-\frac{1}{2} m v_{0}^{2}=G M m\left(\frac{1}{r}-\frac{1}{R_{e}}\right)
\end{aligned}
$$

We can immediately find the maximum height of $m$. At the highest point, $v(r)=0$ and we have

$$
v_{0}^{2}=2 G M_{e}\left(\frac{1}{R_{e}}-\frac{1}{r_{\max }}\right) .
$$

It is a good idea to introduce known familiar constants whenever possible. For example
Since, $g=\frac{G M_{e}}{R_{e}^{2}}$, we can write, $v_{0}^{2}=2 g R_{e}^{2}\left(\frac{1}{R_{e}}-\frac{1}{r_{\max }}\right)=2 g R_{e}\left(1-\frac{R_{e}}{r_{\max }}\right)$ or $r_{\max }=\frac{R_{e}}{1-\frac{v_{0}^{2}}{2 g R_{e}}}$.
The escape velocity from the earth is the initial velocity needed to move $r_{\text {max }}$ to infinity.
Then escape velocity, $v_{\text {escape }}=\sqrt{2 g R_{e}}=\sqrt{2 \times 9.8 \times 6.4 \times 10^{6}}=1.1 \times 10^{4} \mathrm{~m} / \mathrm{s}$

# PraVegaal Education 

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016 Contact: +91-89207-59559, 8076563184 Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com

Example: Consider a mass $M$ attached to a spring with spring constant $k$. Using the coordinate $x$ measured from the equilibrium point $x_{0}$ solve the Equation of motion for simple harmonic motion with the help of work energy theorem.

Solution: Consider a mass $M$ attached to a spring.
Using the coordinate $x$ measured from the equilibrium point, the spring force is $F=-k x$.
$\frac{1}{2} M v^{2}-\frac{1}{2} M v_{0}^{2}=-k \int_{x_{0}}^{x} x d x=-\frac{1}{2} k x^{2}+\frac{1}{2} k x_{0}^{2}$


In order to find $x$ and $v$, we must know their values at some time $t_{0}$. Let us consider the case where at $t=0$ the mass is released from rest, $v_{0}=0$, at a distance $x_{0}$ from the origin. Then

$$
v^{2}=-\frac{k}{M} x^{2}+\frac{k}{M} x_{0}^{2} \text { and } \frac{d x}{d t}=\sqrt{\frac{k}{M}} \sqrt{x_{0}^{2}-x^{2}}
$$

Separating the variables gives

$$
\int_{x_{0}}^{x} \frac{d x}{\sqrt{x_{0}^{2}-x^{2}}}=\sqrt{\frac{k}{M}} \int_{0}^{t} d t=\sqrt{\frac{k}{M}} t \Rightarrow \sin ^{-1} \frac{x}{x_{0}}=\sqrt{\frac{k}{M}} t
$$

Example: A small bar $A$ resting on a smooth horizontal plane is attached by threads to a point $P$ and by means of a weightless pulley, to a weight $B$ possessing the same mass as the bar itself. Besides the bar is also attached to a point $O$ by means of a light nondeformed spring of length $l_{0} \mathrm{~cm}$ and stiffness $k=5 \mathrm{mg} / l_{0}$, where $m$ is the mass of the bar. The thread $P A$ have been burned, then the bar starts moving. Find its velocity at the
 moment when it is breaking off the plane.

Solution: When bar PA breaking off the plane, then normal reaction will be zero.
Force equation: $k l_{0}[\operatorname{cosec} \theta-1] \sin \theta=m g \Rightarrow k l_{0}[1-\sin \theta]=m g$
$\Rightarrow \sin \theta=\frac{k l_{0}-m g}{k \ell_{0}}=1-\frac{m g}{k l_{0}}$
Energy equation: From work energy theorem,

# Pravegaal Education 

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016 Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com
Loss in P.E $(m g)=$ Gain in K.E. of both block + spring energy.
$m g l_{0} \cot \theta=\left(\frac{1}{2} m v^{2}\right)+\left(\frac{1}{2} m v^{2}\right)+\frac{1}{2} k l_{0}^{2}(\operatorname{cosec} \theta-1)^{2}$
$\because k=5 m g / l_{0}, \sin \theta=\frac{k l_{0}-m g}{k l_{0}}=\frac{4}{5}, \cos \theta=\frac{3}{5}$ and $\cot \theta=\frac{3}{4}$
from (i) and (ii): $\frac{3}{4} m g l_{0}=m v^{2}+\frac{1}{2}\left(5 m g l_{0}\right)\left(\frac{5}{4}-1\right)^{2}$
$\Rightarrow \frac{3}{4} m g l_{0}=m v^{2}+\frac{5}{32} m g l_{0} \Rightarrow v=\sqrt{\frac{19 g l_{0}}{32}}$


Example: A block of mass $M$ slides down a plane of angle $\theta$. The problem is to find the speed of the block after it has descended through height $h$, assuming that it starts from rest and that the coefficient of friction $\mu$ is constant.
(Initially the block is at rest at height $h$; finally the block is moving
 with speed $v$ at height 0 ).

Solution: The potential energy, kinetic energy and total energy at point $a$ and $b$ respectively

$$
U_{a}=M g h, U_{b}=0 K_{a}=0, K_{b}=\frac{1}{2} M v^{2}, E_{a}=M g h, E_{b}=\frac{1}{2} M v^{2}
$$

The non-conservative force is $f=\mu N=\mu M g \cos \theta$. Hence, conservative work is

$$
W_{b a}^{n c}=\int_{a}^{b} f \cdot d r=-f s,
$$

where $s$ is the distance the block slides. The negative sign arises because the direction of $f$ is always opposite to the displacement, so that $f \cdot d r=-f d r$. Using $s=h / \sin \theta$, we have

$$
W_{b a}^{n c}=-\mu M g \cos \theta \frac{h}{\sin \theta}=-\mu \cot \theta M g h .
$$

The energy equation $E_{b}-E_{a}=W_{b a}^{n c}$ becomes
$\frac{1}{2} M v^{2}-M g h=-\mu \cot \theta M g h$, which gives $v=[2(1-\mu \cot \theta) g h]^{1 / 2}$


CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Contact: +91-89207-59559, 8076563184
Website: www.pravegaa.com I Email: pravegaaeducation@gmail.com

Example: A chain of length $\frac{\pi r}{2}$, mass per unit length $\rho$ is released from rest at $\theta=0^{0}$. On a smooth surface. Find velocity of chain as it leaves the surface.


Solution: Taking a small element of chain taking angle $d \theta$ at point $O$, its mass $=r d \theta \times \rho$
P.E. of element $=d m \times g \times h=r d \theta \times \rho \times g \times r \cos \theta$

Total P.E. $=\int_{\theta=\sigma^{0}}^{\theta=\pi / 2} r d \theta \times \rho g \times r \cos \theta$


$$
U_{1}=\rho g r^{2}
$$

Final P.E. $=$ mass of chain $\times g \times$ distance moved by centre of gravity of chain

$$
U_{2}=\frac{\pi r}{2} \rho g \times\left(\frac{-\pi r / 2}{2}\right) \text { or } U_{2}=-\frac{\pi^{2} r^{2} \rho g}{8} \Delta U=\rho g r^{2}\left(1+\frac{\pi}{8}\right)
$$

or gross in K.E. = Loss in P.E.
$\Rightarrow \frac{1}{2} \times\left(\frac{\pi r}{2} \times \rho\right) v^{2}=\rho g r^{2}\left(1+\frac{\pi^{2}}{8}\right) \Rightarrow v=\sqrt{g r\left(\frac{\pi}{2}+\frac{4}{\pi}\right)}$

