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2. Phase Transition 
A phase of a thermodynamic system and the state of matter has uniform physical properties.  

A phase transition is the transformation of thermodynamic system from one phase or state of 

matter to another.  

During a phase transition of a given medium certain properties of the medium change, often 

discontinuously, as a result of some external condition, such as temperature, pressure and 

others.  

Gibbs phase rule: It is proposed by Josiah Willard Gibbs, which is given by  

   2 PCF  

Where C  is number of components, P  is the number of phase in thermodynamic equilibrium 

with each other and F is number of degree of freedom.  

Phase: A phase is form of matter that is homogeneous in chemical composition and physical 

state.  

  Chapter 11 

  Phase Transition and 
  Low Temperature Physics 
   
 



                 Education 
CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics 

H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016 
#: +91-89207-59559 

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com  
                  2 

Typical phases are solid, liquid and gas. Two immiscible (or liquid mixture with different 

compositions) separated by distinct boundary are countered as two different phase.  

Components: The number of components is the number of chemically independent constituents 

of the system, i.e. minimum number of independent species necessary to define the composition 

of all phase of the system.  

The number of degree of freedom  F  in the context is the number of intensive variable which 

are independent to each other.  

First Order Phase Transition  

Let us consider one component system in which system having only one kind of constituent 

particles. For first order phase transition P T  diagram are shown in fig 1. Depending on the 

system, at some values for temperature and pressure, the three phases of the system may be 

found in equilibrium. In the P-T diagram, the line OA represents equilibrium between solid and 

liquid phases, the line OB represents equilibrium between solid and gas phases, and the line OC 

represents equilibrium between liquid and gas phases. The point O where all the three phases 

are in equilibrium, is known as a triple point. The line OC terminates at the point C, called the  

critical point. Beyond this point, the gas phase cannot be converted into the liquid phase. In 

figure 1, the point C is at the apex of the P-V curve at the critical temperature Tc. For the 

temperature T > Tc, the gas phase of the matter cannot be converted into the liquid phase, but 

for T < Tc, the gas phase can in general be converted into the liquid phase.  
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Figure: P-T phase of one component 
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Equilibrium Between Two Phases 

Let us consider an isolated system having a matter which is existing in two phases, denoted by 1 

and 2, simultaneously in equilibrium with each other (Figure 2). Suppose V1 and V2 are volumes, 

N1 and N2 the number of particles, E1 and E2 the internal energies, and S1 and S2 the entropies of 

the two phases, respectively. For each phase, entropy is a function of its volume, number of 

particles (mass) and internal energy.  

From these relations, it follows that  

 21 TT   thermal equilibrium  

 21 PP   mechanical equilibrium  

 21    chemical equilibrium  

 

 

Hence, when two different phases of the matter are in equilibrium, their temperatures, pressures 

and chemical potentials must be equal. If the chemical potentials are expressed as functions of 

pressure and temperature, we have  

      TPTP ,, 21    

where P (= P1 = P2) and T (= T1 = T2) are the common pressure and temperature, respectively, of 

the two phases in equilibrium. Thus, from above equation , we have  

       2211 ,, NTPGNTPG   

   
2

2

1

1

N

G

N

G
  

where G1(P, T) and G2(P, T) are the Gibbs free energies, and N1 and N2 the number of particles in 

the two phases, respectively. Since during the phase transition, the number of particles is not 

changing (i.e., N1 = N2), we have  

      TPGTPG ,, 21   

Hence, during the phase transition, the Gibbs free energy does not change. Gibbs energies G1 

and G2 of the two phases 1 and 2, respectively, can be exhibited as shown in figure 4.  
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Figure 2: Equilibrium of two  
      phases of an isolated  
      one component system 
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Clapeyron-Clausius Equation  

When the two phases, denoted by 1 and 2, of the given matter are in equilibrium, we have  

      TPGTPG ,, 21    

where G1 and G2 are Gibbs free energies of the two phases, respectively, and P (= P1 = P2) and T 

(= T1 = T2) are the common pressure and temperature, respectively, of the two phases. In the P-

T diagram, along the phase-transition line, let us consider a point, where the pressure is P + dP 

and the temperature is T + dT so that we have  

    dTTdPPGdTTdPPG  ,, 21  

Using Taylor series expansion and neglecting the higher order terms, we have  

     dT
T
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1 ,,  

Using above two equation we get  

 02121  dTSdTSdPVdPV  
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where  12 HHH   is the change in heat (enthalpy) which is the molar latent heat L. thus, 

from equation an we have 
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L

dT
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
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for V2 > V1, we have 
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Figure 3: Phase equilibrium curve (G1 – G2) separating two phases 1 and 2. 
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further, for S2 > S1, we have 
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Liquid-Vapour Phase Transition 

Let us consider a phase transition from a liquid state to a vapor one. If Vi and Vg, respectively, 

denote the volume in the liquid and gas phases, and Lv is the heat of vaporization (latent heat for 

the transition from liquid to vapour), the Clapeyro-Clausius equation is  

    ig

v

VVT

L

dT

dP


  

Since in the phase transition, Vg is always greater than Vi and the heat of vaporization Lv is positive 

and we have  

   0
dT

dP  

It shows that the boiling point of a liquid increases with the increase in pressure.  

Now, if the vapour pressure is low, i.e., Vg >> Vi, in comparison to Vg, and we have  

   
g

v

TV

L

dT

dP
  

Using the ideal gas equation, PVg = RT, we have  

   
2RT

PL

dT

dP v    
2T

dT

R

L

P

dP v  

      C
TR

L
TP v 

1
ln    

where C is a constant of integration. At the critical point, we have P = Pc, T = Tc and equation is  

   C
TR

L
TP v
cc 

1
ln     

       











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



TTR

L
TPTP

c

v
cc

11
exp  

Here, we have assumed that the heat of vapourisation vL  is independent of the temperature. 

However, it depends on the temperature. Suppose it varies as ,bTaLv  then for an ideal gas 

at low pressure, we have  

   
 

2T

dT

R

bTa

P

dP 
  
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        CT
R

b

TR

a
TP  ln

1
ln  

where C is a constant of integration. At the critical point, we have cc TTPP  ,  and equation 

is  

        CT
R

b

TR

a
TP c

c
cc  ln

1
ln   

On subtracting equation from and rearranging, we have  
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Properties of First Order Phase Transition  

(1) Gibbs free energy is continuous  

(2) First order derivative with respect to temperature and pressure have finite discontinuity i.e. 

entropy ( )S  and pressures ( )P  have finite discontinuity.  

 (3) Second and more higher order differential is infinite   
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Fig. 4: A schematic representation of first order   
 phase transitions 
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Example: For a two phase system in equilibrium, p is a function of T only, so that  

   
V S

P P

T T

           
 

Show that  

   
2

V

S

C dP
TV

dT
   
 

 

Solution: Let us take T and V as independent variables and write  

    VTSS ,  

so that,   dV
V

S
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For an adiabatic process, it yields  

   
STV T

V

V

S

T
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

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
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Using first Maxwell relation, we obtain  

   
V V S

S P V

T T T

                    
 

Since V
V

P
C T

T

    
we can write  

 V
V S

P V
C T

T T

              V S S

P V P
T

T P T

                     
 

      S
V S

P P
TV

T T
             

2

S

dP
TV

dT
    

 
 

where S  is adiabatic compressibility.  

Example: Calculate under what Pressure water would boil at 120° C. One gram of steam occupies 

a volume of 1677 cm3. Latent heat of steam = 540 cal/g, J = 4.2  107 erg/cal. atmospheric 

pressure = 1.0  106 dyne/cm3  

Solution: 
 2 1

dP L

dT T V V



  

 2 1

L dT
dP

V V





 

 16772 V cm3/g   12 V cm3/g  

 L = 4.2  107  540 erg/g  o20dT  k  

 725.0dP    P2 – P1 = .725  
 725.1725.01725.0 12  PP   
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Example: Liquid helium – 4 has normal boiling point of 4.2 k. However, at pressure at 1 mm   of 

mercury it boils at 1.2 k. Estimate the average latent heat of vaporization of helium in this 

temperature range.  

Solution:  
  gg e

dP L L

dT TVT V V
 


 

  gPV RT   g

RT
V

P
  

  

P

RT
T

L

dT

dP
  

2

dP LP

dT RT
   

   
P

P

T

T T

dT

R

L

P

dP

0 0

2
 









TTR

L

P

P 11
ln

00

  

TT

P

P
R

L
11

ln

0

0


  

  P0 = 746 mm   T0 = 4.2 k   

  P1 = 1 mm   T = 1.2  

  L = 93 J/mol.  

 

Example: Liquid helium boils at temperature T0 when its vapour pressure is equal to P0 we now 

pump on the vapour and reduce the pressure to much smaller value P. Assume that the Latent 

heat L is approximately independent at temperature and helium vapour density is much smaller 

than that of liquid, calculate the approximate temperature Tm of the liquid in equilibrium with its 

vapour at pressure P. 

Express your answer in terms of L, T0, P0, Pm and any other required constants.  

Solution:  
VT

L

dT

dP


   gas liq gasV V V V     

  
2RT
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dT

dP
    

m mP

P

T

T T

dT

R

L

P
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m

m

P

P

L
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T

T
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0

ln1

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Example: In the phase transition from a liquid state to a vapour state. The heat of vapourisation 

vL  varies with temperature T as 2/1bTaLv  . Considering the gas as an ideal one at low 

pressure, show that the pressure  TP  at temperature T  in terms of the critical pressure  cc TP  

at critical temperature cT  is given by  

   
 
  













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











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2
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cccc TTR

b

TTR

a
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Solution: Clapeyron-Clausius equation for the phase transition from liquid to vapour is  

    ig

v

VVT

L

dT

dP


  

where vL  is the heat of vapourisation and iV  and gV , respectively, denote the volume is the 

liquid and gas phase. For low pressure, ig VV   

   
g

v

TV

L

dT

dP
  

Using ,2/1bTaLv  we have  

   
gTV

bTa

dT

dP 2/1
     

For an ideal gas equation, ,RTPVg   and thus,  

   
 

2

2/1

RT

PbTa

dT

dP 


 1/ 2

2 2 3 / 2

a bT P a dT b dT
dT

R RRT T T


    

      C
TR

b

TR

a
TP 

2/1

11
ln  

On subtracting equation above and rearranging, we have  

   
 
  




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


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
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
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

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Derive Glausius-Clapeyron equation from Maxwell relation
VT T

P
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S
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
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
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
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P
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V

Q
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 LdmQ   
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L
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T


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
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
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(b) Draw Phase diagram for water and explain why water expand after freezing.  

Phase diagram for water 

The slope of solid liquid phase is negative. 

So from Clausius:- 

Clapeyron equation 

   solidliqsat VVT

L

T

P













 

  ve
T

P











  0 solidliq VV  solidliq VV   

so water expand on freezing 
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T

solid liquid point critical
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