

Chapter 1 Tools of Quantum Mechanics

3. Dirac Notation

The function belongs to Hilbert space H can be represented in term of Dirac notation. It is abstract notation can be efficiently used in quantum mechanics.

If function $\psi(x)$ belongs to Hilbert space H with dynamical variable x then it can be represented as ket vector as $|\psi\rangle$ pronounced as ψ (shai) ket. Similarly, function $\phi(x)$ can be represented as $|\phi\rangle$ and pronounced as ϕ (phai) ket. The $\psi^*(x)$ belongs to duel space of can be represented as Bra vector $\langle \psi |$ pronounced as ψ (shai) Bra. Similarly, function $\phi^*(x)$ can be represented as $\langle \phi |$ and pronounced as ϕ (phai) bra.

Mathematically ket vector is equivalent to column vector as $|\psi\rangle \equiv \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

Bra vector is complex adjoint of ket vector i.e. Row vector represented as $\langle \psi | = (a^* \ b^* \ c^*)$

Pravegae Education

For example if ket vector is given by $|\psi\rangle = \begin{pmatrix} 2 \\ -3 \\ 3+4i \end{pmatrix}$ then corresponding bra vector is

 $\langle \psi | = (2 \quad -3 \quad 3 - 4i)$

A. Addition Rule

(a) Closer Relation If $|\psi\rangle$ and $|\psi\rangle$ are belongs to Hilbert Space H then their addition $|\phi\rangle + |\psi\rangle = |\xi\rangle$. Ket $|\xi\rangle$ will also belongs to same Hilbert space H.

- (b) Commutation $|\phi\rangle + |\psi\rangle = |\psi\rangle + |\phi\rangle$
- (c) Associative $(|\phi\rangle + |\psi\rangle) + |\xi\rangle = |\phi\rangle + (|\psi\rangle + |\xi\rangle)$

(d) Existence of Null vector there exists a vector or function represented as $|O\rangle$ which addition to any function $|\psi\rangle$ will produce same vector i.e. $|\psi\rangle + |O\rangle = |\psi\rangle$

(e) Existence of inverse There must be existence of inverse vector of Ket $|\psi
angle$ which addition on

 $|\psi\rangle$ will produce null vector . i.e. $|\psi\rangle + (-|\psi\rangle) = |O\rangle$. Which means $-|\psi\rangle$ is inverse of $|\psi\rangle$.

B. Scalar Multiplication

(a) The product of a scalar with a vector gives another vector. In general, if $|\phi\rangle$ and $|\psi\rangle$ are two ketvectors of the space, any linear combination $a|\phi\rangle + b|\psi\rangle$ is also a vector of the space, a and

b being scalars.

(b) Distributive with respect to addition

 $(a+b)|\psi\rangle = a|\psi\rangle + b|\psi\rangle$ and $a(|\psi\rangle + |\phi\rangle) = a|\psi\rangle + a|\phi\rangle$

(c) Associativity with respect to multiplication of scalars

$$a(b|\psi\rangle) = ab|\psi\rangle$$

(d) For each element ψ there must exist a unitary scalar $\, {\it I} \,$ and a zero scalar $\, 0 \,$ such that

$$I |\psi\rangle = |\psi\rangle$$
 and $0 |\psi\rangle = |O\rangle$

Scalar Product in Dirac Notation

Scalar Product: If two ket vectors $|\phi\rangle$ and $|\psi\rangle$ belongs to same Hilbert space H.where x is dynamical variable of system then scalar product can be denoted by $\langle \phi | \psi \rangle$. The value of scalar product is

 $\langle \phi | \psi \rangle = \int_{-\infty}^{\infty} \phi^*(x) \psi(x) dx < \infty$. Famously it is also named as inner product. The inner product

 $\langle \phi | \psi
angle$ must be finite number.

Properties of scalar product

(a)
$$\langle \phi | \psi \rangle^* = \langle \psi | \phi \rangle$$

(b) $(|\psi \rangle, a_1 | \phi_1 \rangle + a_2 | \phi_2 \rangle) = a_1 \langle \psi | \phi_1 \rangle + a_2 \langle \psi | \phi_2 \rangle$
(c) $(a_1 | \phi_1 \rangle + a_2 | \phi_2 \rangle, |\psi \rangle) = a_1^* \langle \phi_1 | \psi \rangle + a_2^* \langle \phi_2 | \psi \rangle$
(d) $(a_1 | \phi_1 \rangle + a_2 | \phi_2 \rangle, b_1 | \psi_1 \rangle + b_2 | \psi_2 \rangle) = a_1^* b_1 \langle \phi_1 | \psi_1 \rangle + a_1^* b_2 \langle \phi_1 | \psi_2 \rangle + a_2^* b_1 \langle \phi_2 | \psi_1 \rangle + a_2^* b_2 \langle \phi_2 | \psi_2 \rangle$
Normalized Eulection: If norm of any ket vector $|\psi \rangle$ belong to Hilbert space. His one

Normalized Function: If norm of any ket vector $|\psi\rangle$ belong to Hilbert space H is one then function is said to be normalized. Any square integrable function can be normalized when it is divided by its norm which is also known as normalization constant $A = \frac{1}{N} = \frac{1}{\sqrt{\langle \psi | \psi \rangle}}$. In general

normalization condition is
$$\langle \psi | \psi \rangle = \int_{-\infty}^{+\infty} \psi^* \psi dx = 1 \Rightarrow \int_{-\infty}^{+\infty} |\psi|^2 dx = 1$$
.

Orthogonal Function: If two ket vector $|\phi\rangle$ and $|\psi\rangle$ belong to same Hilbert space H. They are said to be orthogonal if scalar product between that function will vanish ie $\langle \psi | \phi \rangle = 0 \Rightarrow \int_{-\infty}^{+\infty} \psi^*(x) \phi(x) dx = 0$

Orthonormal Function: If two vectors $ig|\phi_iig
angle$ and $ig|\phi_jig
angle$ belong to same Hilbert space H . They are said

to be orthonormal if $\langle \phi_i | \phi_j \rangle = \delta_{i,j} \Rightarrow \int_{-\infty}^{+\infty} \phi_i(x) \phi_j(x) dx = \delta_{ij} = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases}$, where $\delta_{i,j}$ is identified as Kronecker delta

Forbidden State and Direct Product: If ket $|\phi\rangle$ and ket $|\psi\rangle$ belongs to same Hilbert space H then direct product $|\phi\rangle \otimes |\psi\rangle$ and $\langle\phi| \otimes \langle\psi|$ are meaningless, they are void and Nonsensical. If ket $|\phi\rangle$ and ket $|\psi\rangle$ belongs to different Hilbert space H then direct product $|\phi\rangle \otimes |\psi\rangle$ and $\langle\phi| \otimes \langle\psi|$ are identified as direct product.

Triangle Inequality: If ket $|\phi\rangle$ and ket $|\psi\rangle$ belongs to same Hilbert space H

$$\sqrt{\left\langle \psi + \phi \left| \psi + \phi \right\rangle} \le \sqrt{\left\langle \psi \left| \psi \right\rangle} + \sqrt{\left\langle \phi \left| \phi \right\rangle}$$

Cauchy Swartz inequality If ket $|\phi\rangle$ and ket $|\psi\rangle$ belongs to same Hilbert space H then

$$\begin{split} \left| \left\langle \psi \left| \phi \right\rangle \right|^{2} &\leq \left(\left\langle \psi \left| \psi \right\rangle \right) \left(\left\langle \phi \right| \phi \right\rangle \right) \\ \text{Proof: } 0 &\leq \left\| \phi \right\rangle - \lambda \left| \psi \right\rangle \right|^{2} \text{ where } \lambda = \frac{\left\langle \phi \left| \psi \right\rangle}{\left\langle \psi \left| \psi \right\rangle} \text{ so } \lambda^{*} = \frac{\left\langle \psi \left| \phi \right\rangle}{\left\langle \psi \left| \psi \right\rangle} \\ 0 &\leq \left\| \phi \right\rangle - \lambda \left| \psi \right\rangle \right|^{2} \Rightarrow 0 \leq \left(\left| \phi \right\rangle - \lambda \left| \psi \right\rangle, \left| \phi \right\rangle - \lambda \left| \psi \right\rangle \right) \\ \Rightarrow 0 &\leq \left\langle \phi \left| \phi \right\rangle - \lambda \left\langle \phi \right| \psi \right\rangle - \lambda^{*} \left\langle \psi \left| \phi \right\rangle + \lambda^{*} \lambda \left\langle \psi \right| \psi \right\rangle \\ \Rightarrow 0 &\leq \left\langle \phi \left| \phi \right\rangle - \frac{\left\langle \phi \left| \psi \right\rangle}{\left\langle \psi \left| \psi \right\rangle}, \left\langle \phi \right| \psi \right\rangle - \frac{\left\langle \psi \left| \phi \right\rangle}{\left\langle \psi \left| \psi \right\rangle}, \left\langle \psi \left| \phi \right\rangle \right\rangle, \frac{\left\langle \phi \left| \psi \right\rangle}{\left\langle \psi \left| \psi \right\rangle}, \left\langle \psi \left| \psi \right\rangle \right\rangle \\ \Rightarrow \left\langle \phi \right| \phi \right\rangle &\leq -\frac{\left\langle \phi \left| \psi \right\rangle}{\left\langle \psi \left| \psi \right\rangle}, \left\langle \phi \right| \psi \right\rangle - \frac{\left\langle \psi \left| \phi \right\rangle}{\left\langle \psi \left| \psi \right\rangle}, \left\langle \psi \right| \phi \right\rangle, \frac{\left\langle \phi \left| \psi \right\rangle}{\left\langle \psi \left| \psi \right\rangle}, \left\langle \psi \left| \psi \right\rangle \\ \Rightarrow \left\langle \phi \right| \phi \right\rangle &\leq -\frac{\left\langle \phi \left| \psi \right\rangle}{\left\langle \psi \left| \psi \right\rangle}, \left\langle \phi \right| \psi \right\rangle - \frac{\left\langle \psi \left| \phi \right\rangle}{\left\langle \psi \left| \psi \right\rangle}, \left\langle \phi \right| \psi \right\rangle \\ \Rightarrow \left\langle \phi \right| \phi \right\rangle &\leq -\frac{\left\langle \phi \left| \psi \right\rangle}{\left\langle \psi \left| \psi \right\rangle}, \left\langle \phi \right| \psi \right\rangle \Rightarrow \left\langle \phi \left| \phi \right\rangle + \frac{\left\langle \psi \left| \phi \right\rangle}{\left\langle \psi \left| \psi \right\rangle}, \left\langle \phi \right| \psi \right\rangle \\ \Rightarrow \left\langle \phi \left| \phi \right\rangle &\leq -\frac{\left\langle \phi \left| \psi \right\rangle}{\left\langle \psi \left| \psi \right\rangle}, \left\langle \phi \right| \psi \right\rangle \Rightarrow \left\langle \phi \left| \phi \right\rangle \right\langle \psi \left| \psi \right\rangle \\ \Rightarrow \left\langle \phi \left| \phi \right\rangle, \left\langle \phi \right| \psi \right\rangle &\geq \left\langle \psi \left| \phi \right\rangle, \left\langle \phi \left| \psi \right\rangle \Rightarrow \left| \left\langle \psi \left| \phi \right\rangle \right|^{2} &\leq \left(\left\langle \psi \left| \psi \right\rangle \right) \right| \left\langle \phi \left| \phi \right\rangle \right) \end{aligned}$$

Linear Independency

The vector $|\phi_1\rangle, |\phi_2\rangle, |\phi_3\rangle, ..., |\phi_N\rangle$ are said to be linear independent if we find the coefficient $c_1, c_2, c_3, ..., c_N$ which satisfy the equation. $c_1 |\phi_1\rangle + c_2 |\phi_2\rangle + c_3 |\phi_3\rangle + ... + c_N |\phi_N\rangle = 0$ and get the unique solution as

 $c_1 = c_2 = c_3 = \dots = c_N = 0$ then $|\phi_1\rangle, |\phi_2\rangle, |\phi_3\rangle, \dots, |\phi_N\rangle$ is said to be linearly independent.

The dimension of a vector space is given by the maximum number of linearly independent vectors the space can have. For instance, if the maximum number of linearly independent vectors a space has is $N |\phi_1\rangle, |\phi_2\rangle, |\phi_3\rangle, ..., |\phi_N\rangle$ this space is said to be N - dimensional. In this N -dimensional vector space, any vector $|\psi\rangle$ can be expanded as a linear combination i.e. $|\psi\rangle = c_1 |\phi_1\rangle + c_2 |\phi_2\rangle + c_3 |\phi_3\rangle + ... + c_N |\phi_N\rangle$

Relation between orthogonal and linearly independent vectors

Every orthogonal vector is linearly independent but it is not necessary that every linear independent vector is orthogonal.

In quantum mechanics any vector $|\psi\rangle$ can be represented in orthonormal basis of vector $|\phi_1\rangle, |\phi_2\rangle, |\phi_3\rangle, ... |\phi_i\rangle.... |\phi_i\rangle.... |\phi_N\rangle$ as

$$|\psi\rangle = c_1 |\phi_1\rangle + c_2 |\phi_2\rangle + c_3 |\phi_3\rangle + ..c_i |\phi_i\rangle ...c_j |\phi_j\rangle + c_N |\phi_N\rangle \Longrightarrow |\psi\rangle = \sum_{i=1}^N c_i |\phi_i\rangle$$

Hence it is given $\langle \phi_i | \phi_j \rangle = \delta_{i,j}$ so the term $c_i = \langle \phi_i | \psi \rangle$ and $c_j = \langle \phi_j | \psi \rangle$

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics So $|\psi\rangle = \sum_{i=1}^{N} c_i |\phi_i\rangle = \sum_{i=1}^{N} (\langle \phi_i |\psi \rangle) |\phi_i\rangle$ which means the coefficient c_i is scalar product between component basis vector $|\phi_i\rangle$ and vector $|\psi\rangle$. This trick can be only applied if vectors can be represented in orthonormal basis vector. Here basis vectors $|\phi_1\rangle, |\phi_2\rangle, |\phi_3\rangle, ... |\phi_i\rangle.... |\phi_j\rangle.... |\phi_N\rangle$ are analogically orthonormal unit vectors in Euclidian space.

Pravegae Education

Example: If $\psi(x) = \begin{cases} 0, & x < 0 \\ A \exp\left(-\frac{x}{a} + ikx\right), x > 0 \end{cases}$ where a, k are positive constant, then find the value of A such that $\psi(x)$ is normalized. Solution: $\psi(x) = \begin{cases} 0, & x < 0 \\ A \exp\left(-\frac{x}{a} + ikx\right), x > 0 \end{cases}$ and $\psi^*(x) = \begin{cases} 0, & x < 0 \\ A \exp\left(-\frac{x}{a} - ikx\right), x > 0 \end{cases}$ For normalization $(\psi, \psi) = 1 \Rightarrow \int_{-\infty}^{\infty} \psi^*(x)\psi(x)dx = 1$ $\int_{-\infty}^{0} 0 dx + \int_{0}^{\infty} A^* \exp\left(-\frac{x}{a} - ikx\right)A \exp\left(-\frac{x}{a} + ikx\right)dx = 1 \Rightarrow |A|^2 \int_{0}^{\infty} \exp\left(-\frac{2x}{a}\right)dx = 1$ $\Rightarrow A = \sqrt{\frac{2}{a}} \text{ so } \psi(x) = \begin{cases} 0, & x < 0 \\ \sqrt{\frac{2}{a}} \exp\left(-\frac{x}{a} + ikx\right), x > 0 \end{cases}$ is normalized function.

Example: Assume two function $\phi(x)$ and $\psi(x)$, which is defined as $\phi(x) = \begin{cases} a, -1 \le x \le 1 \\ 0, otherwise \end{cases}$ and $\psi(x) = \begin{cases} bx + c, -1 \le x \le 1 \\ 0, otherwise \end{cases}$. Find the condition on a, b, c (real numbers) such that $\phi(x)$ and $\psi(x)$ are orthonormal vector.

Solution: Condition such that $\phi(x)$ is normalized $(\phi, \phi) = \int_{-\infty}^{\infty} \phi^* \phi dx = 1 \Rightarrow \int_{-1}^{1} a^2 dx = 1 \Rightarrow a = \frac{1}{\sqrt{2}}$ Condition such that $\phi(x)$ and $\psi(x)$ are orthogonal

$$(\phi,\psi) = 0 \Rightarrow \int_{-\infty}^{\infty} \phi^* \psi \, dx = 0 \Rightarrow \int_{-1}^{1} \frac{1}{\sqrt{2}} (bx+c) \, dx = 0 \Rightarrow c = 0$$

Condition for $\psi(x)$ is normalized $(\psi, \psi) = 1 \Rightarrow \int_{-\infty}^{\infty} \psi^* \psi \, dx = 0 \Rightarrow \int_{-1}^{1} (bx)^2 \, dx = 1 \Rightarrow b = \sqrt{\frac{3}{2}}$

So, $\phi(x) = \begin{cases} \frac{1}{\sqrt{2}}, -1 \le x \le 1\\ 0, otherwise \end{cases}$ and $\psi(x) = \begin{cases} \sqrt{\frac{3}{2}}x, -1 \le x \le 1\\ 0, otherwise \end{cases}$ are orthonormal functions.

Example: function $\phi(x) = \exp(-\alpha x^2)$, where $-\infty < x < +\infty$, and $\psi(x) = x \exp(-\alpha x^2)$ where $-\infty < x < \infty$ belong to Hilbert space with variable x (a) Find norms of $\phi(x)$ and $\psi(x)$ write expression of normalized $\phi(x)$ and $\psi(x)$. (b) Prove that $\phi(x)$ and $\psi(x)$ are orthogonal. Use the integration $\int_{0}^{\infty} x^{n} \exp\left(-\beta x^{2}\right) dx = \frac{1}{2} \cdot \frac{1}{\rho^{\frac{n+1}{2}}} \left| \frac{n+1}{2} \right|^{\frac{n+1}{2}}$ **Solution:** (a) Norms of $\phi(x)$ is $N_1 = \sqrt{(\phi, \phi)} , \ (\phi, \phi) = \int_{-\infty}^{\infty} \phi^*(x)\phi(x) dx \Rightarrow \int_{-\infty}^{\infty} \exp(-2\alpha x^2) dx \Rightarrow 2 \times \frac{1}{2} \times \left(\frac{1}{2\alpha}\right)^{1/2} \left|\frac{1}{2} = \left(\frac{1}{2\alpha}\right)^{1/2} \sqrt{\pi}$ $N_1 = \left(\frac{\pi}{2\alpha}\right)^{1/4}$, so normalized constant $A_1 = \frac{1}{N_1} \Longrightarrow A_1 = \left(\frac{2\alpha}{\pi}\right)^{1/4}$ Normalized function $\phi(x) = \left(\frac{2\alpha}{\pi}\right)^{1/4} \exp(-\alpha x^2)$ Norms of $\psi(x)$ is $N_2 = \sqrt{(\psi, \psi)}$, $(\psi,\psi) = \int_{-\infty}^{\infty} \psi^*(x)\psi(x)dx \Rightarrow \int_{-\infty}^{\infty} x^2 \exp\left(-2\alpha x^2\right)dx \Rightarrow 2 \times \frac{1}{2} \times \left(\frac{1}{2\alpha}\right)^{3/2} \left[\frac{3}{2} = \left(\frac{1}{2\alpha}\right)^{3/2} \cdot \frac{1}{2} \cdot \sqrt{\pi}\right]$ $N_{2} = \left(\frac{1}{2}\right)^{1/2} \left(\frac{\pi^{1/4}}{(2\alpha)^{3/4}}\right) \text{ so normalized constant } A_{2} = \frac{1}{N_{2}} \Longrightarrow A_{1} = 2^{1/2} \left(\frac{(2\alpha)^{3}}{\pi}\right)^{1/4}$ Normalized function $\psi(x) = 2^{1/2} \left(\frac{(2\alpha)^3}{\pi}\right)^{1/4} x \exp(-\alpha x^2) \oint \phi(x)$ (b) If ϕ and ψ are orthogonal, then $\left(\phi,\psi
ight)\!=\!0$ $\Rightarrow A_1 \cdot A_2 \int^{+\infty} e^{-\alpha x^2} x e^{-\alpha x^2} dx = 0$ If $|\psi\rangle = A \begin{vmatrix} i \\ 0 \end{vmatrix}$, Find the value of A such that $|\psi|$ is normalized. Example: (a) Solution: (a) If ket vector is $|\psi\rangle = A \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix}$ then bra vector $\langle \psi | = A^*(1 - i \ 0)$ For normalization condition $\langle \psi | \psi \rangle = 1$

$$\Rightarrow A^* \begin{pmatrix} 1 & -i & 0 \end{pmatrix} \cdot A \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} = 1 \Rightarrow |A|^2 (1+1+0) = 1 \Rightarrow |A|^2 = \frac{1}{2} \Rightarrow A = \frac{1}{\sqrt{2}}$$

H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016 #: +91-89207-59559 Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

Example: If
$$|\psi\rangle = a_1 |\phi_1\rangle + a_2 |\phi_2\rangle$$
 it is also given $\langle \phi_i | \phi_j \rangle = \delta_{i,j}$ find $\langle \psi | \psi \rangle$ and $|\psi|^2$.
Solution: If ket $|\psi\rangle = a_1 |\phi_1\rangle + a_2 |\phi_2\rangle$
 $\langle \psi | = a_1^* \langle \phi_1 | + a_2^* \langle \phi_2 |$
 $\langle \psi | \psi \rangle = a_1^* a_1 \langle \phi_1 | \phi_1 \rangle + a_1^* a_2 \langle \phi_1 | \phi_2 \rangle + a_2^* a_1 \langle \phi_2 | \phi_1 \rangle + a_2^* a_2 \langle \phi_2 | \phi_2 \rangle$
Hence $\langle \phi_i | \phi_j \rangle = \delta_{i,j}$ so $\langle \phi_1 | \phi_1 \rangle = 1, \langle \phi_2 | \phi_2 \rangle = 1, \langle \phi_1 | \phi_2 \rangle = 0, \langle \phi_2 | \phi_1 \rangle = 0$
 $\langle \psi | \psi \rangle = a_1^* a_1 + a_2^* a_2 = |a_1|^2 + |a_2|^2$ which is scalar number
 $|\psi|^2 = \psi^* \psi, \ \psi = a_1 \phi_1 + a_2 \phi_2, \ \psi^* = a_1^* \phi_1^* + a_2^* \phi_2^*$
 $\psi^* \psi = (a_1^* \phi_1^* + a_2^* \phi_2^*) (a_1 \phi_1 + a_2 \phi_2)$
 $|\psi|^2 = a_1^* a_1 \phi_1^* \phi_1 + a_1^* a_2 \phi_1^* \phi_2 + a_2^* a_1 \phi_2^* \phi_1 + a_2^* a_2 \phi_2^* \phi_2 = |a_1|^2 |\phi_1|^2 + a_1^* a_2 \phi_1^* \phi_2 + a_2^* a_1 \phi_2^* \phi_1 + |a_2|^2 |\phi_2|^2$
 $|\psi|^2 = |a_1|^2 |\phi_1|^2 + |a_2|^2 |\phi_1|^2 + 2 \operatorname{Re}(a_1^* a_2 \phi_1^* \phi_2)$ which is a function

Example: If $|\psi_1\rangle = a_1 |\phi_1\rangle + a_2 |\phi_2\rangle$ and $|\psi_2\rangle = b_1 |\phi_1\rangle + b_2 |\phi_2\rangle$ it is given $\langle \phi_1 |\phi_j\rangle = \delta_{i,j}$ find the condition such that $|\psi_1\rangle$ and $|\psi_2\rangle$ are orthonormal. Solution: Condition such that $|\psi_1\rangle$ is normalized $\langle \psi_1 |\psi_1\rangle = 1$ $\langle \psi_1 |\psi_1\rangle = 1 \Rightarrow a_1^* a_1 \langle \phi_1 |\phi_1\rangle + a_2^* a_2 \langle \phi_2 |\phi_2\rangle + a_1^* a_2 \langle \phi_1 |\phi_2\rangle + a_2^* a_1 \langle \phi_2 |\phi_1\rangle = 1$ if $\langle \phi_i |\phi_j\rangle = \delta_{i,j}$ $\langle \phi_1 |\phi_1\rangle = 1 \Rightarrow |a_1|^2 + |a_2|^2 = 1$ $\langle \psi_2 |\psi_2\rangle = 1 \Rightarrow b_1^* b_1 \langle \phi_1 |\phi_1\rangle + b_2^* b_2 \langle \phi_2 |\phi_2\rangle + b_1^* b_2 \langle \phi_1 |\phi_2\rangle + b_2^* b_1 \langle \phi_2 |\phi_1\rangle = 1$ if $\langle \phi_i |\phi_j\rangle = \delta_{i,j}$, $\langle \phi_1 |\phi_1\rangle = 1$, $\langle \phi_2 |\phi_2\rangle = 1$, $\langle \phi_1 |\phi_2\rangle = 0$, $\langle \phi_2 |\phi_1\rangle = 0$ $b_1^* b_1 + b_2^* b_2 = 1 \Rightarrow |b_1|^2 + |b_2|^2 = 1$ $\langle \psi_1 |\psi_2\rangle = 0 \Rightarrow a_1^* b_1 \langle \phi_1 |\phi_1\rangle + a_2^* b_2 \langle \phi_2 |\phi_2\rangle + a_1^* b_2 \langle \phi_1 |\phi_2\rangle + a_2^* b_1 \langle \phi_2 |\phi_1\rangle = 0$ if $\langle \phi_i |\phi_j\rangle = \delta_{i,j}$, $\langle \phi_1 |\phi_1\rangle = 1$, $\langle \phi_2 |\phi_2\rangle = 1$, $\langle \phi_1 |\phi_2\rangle = 0$, $\langle \phi_2 |\phi_1\rangle = 0$ $\langle \psi_1 |\psi_2\rangle = 0 \Rightarrow a_1^* b_1 \langle \phi_1 |\phi_1\rangle + a_2^* b_2 \langle \phi_2 |\phi_2\rangle = 0$, $\langle \phi_2 |\phi_1\rangle = 0$ $\langle \psi_1 |\psi_2\rangle = 0 \Rightarrow a_1^* b_1 \langle \phi_1 |\phi_1\rangle = 1$, $\langle \phi_2 |\phi_2\rangle = 1$, $\langle \phi_1 |\phi_2\rangle = 0$, $\langle \phi_2 |\phi_1\rangle = 0$ Similarly, $\langle \psi_2 |\psi_1\rangle = 0 \Rightarrow b_1^* a_1 + b_2^* a_2 = 0$

Example: The vector in three-dimensional space is defined as

 $|\phi_1\rangle = \begin{pmatrix} 1\\0\\0 \end{pmatrix}$ $|\phi_2\rangle = \begin{pmatrix} 0\\1\\1 \end{pmatrix}$ $|\phi_3\rangle = \begin{pmatrix} 0\\1\\-1 \end{pmatrix}$. Prove that they are linearly independent

For $|\phi_1\rangle, |\phi_2\rangle, |\phi_3\rangle$ linearly independent $c_1 |\phi_1\rangle + c_2 |\phi_2\rangle + c_3 |\phi_3\rangle = 0$

 $c_{1}\begin{pmatrix}1\\0\\0\end{pmatrix} + c_{2}\begin{pmatrix}0\\1\\1\end{pmatrix} + c_{3}\begin{pmatrix}0\\1\\-1\end{pmatrix} = 0 \text{ solving the equation we get } c_{1} = 0, \ c_{2} + c_{3} = 0, \ c_{2} - c_{3} = 0$

Which has unique solution $c_1 = c_2 = c_3 = 0$ so they are linearly independent

Example: Prove that $\phi_1 = x, \phi_2 = x^2, \phi_3 = x^3$ are linearly independent

$$c_1\phi_1 + c_2\phi_2 + c_3\phi_3 = 0 \Longrightarrow c_1x + c_2x^2 + c_3x^3 = 0$$

equating coefficient, we get $c_1 = c_2 = c_3 = 0$ which ensure that x, x^2, x^3 are linearly independent **Example:** Prove that $\phi_1 = \exp(-x^2)$, $\phi_2 = x \exp(-x^2)$

$$c_1\phi_1 + c_2\phi_2 = 0 \Longrightarrow \exp(-\alpha x^2)[c_1x + c_2] = 0$$
 hence $\exp(-\alpha x^2) \neq 0$

 $[c_1x+c_2]=0 \Rightarrow c_1=c_2=0$ which ensure $\phi_1 = \exp(-x^2) = x \exp(-x^2)$ are linearly independent.

Example: (a) Prove that vector $|\phi_1\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $|\phi_2\rangle = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ are linearly independent but not orthogonal (b) Prove that vector $|\phi_1\rangle = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $|\phi_2\rangle = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ are orthogonal. Also check their linearly independency. **Solution:** (a) $c_1 |\phi_1\rangle + c_2 |\phi_2\rangle = 0 \Rightarrow c_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 0$ $\Rightarrow c_1 + c_2 = 0$ and $c_2 = 0$ which ensure $c_1 = 0, c_2 = 0$ that means $|\phi_1\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $|\phi_2\rangle = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ are linearly independent. Now we check orthogonal relation $\langle \phi_1 | \phi_2 \rangle = 0$ $\Rightarrow \langle \phi_1 | \phi_2 \rangle = (1 \quad 0) \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1 \neq 0$ which means $|\phi_1\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $|\phi_2\rangle = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ are not orthogonal

Pravegae Education

So it is not necessary that linear independent vectors are orthogonal.

(b) If
$$|\phi_1\rangle = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 and $|\phi_2\rangle = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ we check orthogonal relation $\langle \phi_1 | \phi_2 \rangle = 0$
 $\Rightarrow \langle \phi_1 | \phi_2 \rangle = \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 1 \times 1 + 1 \times (-1) = 0$, which means $|\phi_1\rangle = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $|\phi_2\rangle = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ are

orthogonal.

So, if vectors are orthogonal then they must be linearly independent.

Let's check there independency

$$c_1 |\phi_1\rangle + c_2 |\phi_2\rangle = 0 \Longrightarrow c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 0$$

 $\Rightarrow c_1 + c_2 = 0 \text{ and } c_1 - c_2 = 0 \text{ which ensure } c_1 = 0, c_2 = 0 \text{ that means } |\phi_1\rangle = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ and } |\phi_2\rangle = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

are linearly independent.