Chapter 1 Tools of Quantum Mechanics

3. Dirac Notation

The function belongs to Hilbert space H can be represented in term of Dirac notation. It is abstract notation can be efficiently used in quantum mechanics.

If function $\psi(x)$ belongs to Hilbert space H with dynamical variable x then it can be represented as ket vector as $|\psi\rangle$ pronounced as ψ (shai) ket. Similarly, function $\phi(x)$ can be represented as $|\phi\rangle$ and pronounced as ϕ (phai) ket. The $\psi^{*}(x)$ belongs to duel space of can be represented as Bra vector $\langle\psi|$ pronounced as ψ (shai) Bra. Similarly, function $\phi^{*}(x)$ can be represented as $\langle\phi|$ and pronounced as ϕ (phai) bra.

Mathematically ket vector is equivalent to column vector as $|\psi\rangle \equiv\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$
Bra vector is complex adjoint of ket vector i.e. Row vector represented as $\langle\psi| \equiv\left(\begin{array}{lll}a^{*} & b^{*} & c^{*}\end{array}\right)$

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
For example if ket vector is given by $|\psi\rangle=\left(\begin{array}{c}2 \\ -3 \\ 3+4 i\end{array}\right)$ then corresponding bra vector is $\langle\psi|=\left(\begin{array}{lll}2 & -3 & 3-4 i\end{array}\right)$

A. Addition Rule

(a) Closer Relation If ket $|\psi\rangle$ and ket $|\phi\rangle$ are belongs to Hilbert Space H then their addition $|\phi\rangle+|\psi\rangle=|\xi\rangle$. Ket $|\xi\rangle$ will also belongs to same Hilbert space H.
(b) Commutation $|\phi\rangle+|\psi\rangle=|\psi\rangle+|\phi\rangle$
(c) Associative $(|\phi\rangle+|\psi\rangle)+|\xi\rangle=|\phi\rangle+(|\psi\rangle+|\xi\rangle)$
(d) Existence of Null vector there exists a vector or function represented as $|O\rangle$ which addition to any function $|\psi\rangle$ will produce same vector i.e. $|\psi\rangle+|O\rangle=|\psi\rangle$
(e) Existence of inverse There must be existence of inverse vector of Ket $|\psi\rangle$ which addition on $|\psi\rangle$ will produce null vector . i.e. $|\psi\rangle+(-|\psi\rangle)=|O\rangle$. Which means $-|\psi\rangle$ is inverse of $|\psi\rangle$.

B. Scalar Multiplication

(a) The product of a scalar with a vector gives another vector. In general, if $|\phi\rangle$ and $|\psi\rangle$ are two ketvectors of the space, any linear combination $a|\phi\rangle+b|\psi\rangle$ is also a vector of the space, a and b being scalars.
(b) Distributive with respect to addition

$$
(a+b)|\psi\rangle=a|\psi\rangle+b|\psi\rangle \text { and } a(|\psi\rangle+|\phi\rangle)=a|\psi\rangle+a|\phi\rangle
$$

(c) Associativity with respect to multiplication of scalars

$$
a(b|\psi\rangle)=a b|\psi\rangle
$$

(d) For each element ψ there must exist a unitary scalar I and a zero scalar 0 such that

$$
I|\psi\rangle=|\psi\rangle \text { and } 0|\psi\rangle=|O\rangle
$$

Scalar Product in Dirac Notation

Scalar Product: If two ket vectors $|\phi\rangle$ and $|\psi\rangle$ belongs to same Hilbert space H.where x is dynamical variable of system then scalar product can be denoted by $\langle\phi \mid \psi\rangle$. The value of scalar product is

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
$\langle\phi \mid \psi\rangle=\int_{-\infty}^{\infty} \phi^{*}(x) \psi(x) d x<\infty$. Famously it is also named as inner product. The inner product $\langle\phi \mid \psi\rangle$ must be finite number.

Properties of scalar product

(a) $\langle\phi \mid \psi\rangle^{*}=\langle\psi \mid \phi\rangle$
(b) $\left(|\psi\rangle, a_{1}\left|\phi_{1}\right\rangle+a_{2}\left|\phi_{2}\right\rangle\right)=a_{1}\left\langle\psi \mid \phi_{1}\right\rangle+a_{2}\left\langle\psi \mid \phi_{2}\right\rangle$
(c) $\left(a_{1}\left|\phi_{1}\right\rangle+a_{2}\left|\phi_{2}\right\rangle,|\psi\rangle\right)=a_{1}^{*}\left\langle\phi_{1} \mid \psi\right\rangle+a_{2}^{*}\left\langle\phi_{2} \mid \psi\right\rangle$
(d) $\left(a_{1}\left|\phi_{1}\right\rangle+a_{2}\left|\phi_{2}\right\rangle, b_{1}\left|\psi_{1}\right\rangle+b_{2}\left|\psi_{2}\right\rangle\right)=a_{1}^{*} b_{1}\left\langle\phi_{1} \mid \psi_{1}\right\rangle+a_{1}^{*} b_{2}\left\langle\phi_{1} \mid \psi_{2}\right\rangle+a_{2}^{*} b_{1}\left\langle\phi_{2} \mid \psi_{1}\right\rangle+a_{2}^{*} b_{2}\left\langle\phi_{2} \mid \psi_{2}\right\rangle$

Normalized Function: If norm of any ket vector $|\psi\rangle$ belong to Hilbert space His one then function is said to be normalized. Any square integrable function can be normalized when it is divided by its norm which is also known as normalization constant $A=\frac{1}{N}=\frac{1}{\sqrt{\langle\psi \mid \psi\rangle}}$. In general normalization condition is $\langle\psi \mid \psi\rangle=\int_{-\infty}^{+\infty} \psi^{*} \psi d x=1 \Rightarrow \int_{-\infty}^{+\infty}|\psi|^{2} d x=1$.

Orthogonal Function: If two ket vector $|\phi\rangle$ and $|\psi\rangle$ belong to same Hilbert space H. They are said to be orthogonal if scalar product between that function will vanish ie $\langle\psi \mid \phi\rangle=0 \Rightarrow \int_{-\infty}^{+\infty} \psi^{*}(x) \phi(x) d x=0$

Orthonormal Function: If two vectors $\left|\phi_{i}\right\rangle$ and $\left|\phi_{j}\right\rangle$ belong to same Hilbert space H. They are said to be orthonormal if $\left\langle\phi_{i} \mid \phi_{j}\right\rangle=\delta_{i, j} \Rightarrow \int_{-\infty}^{+\infty} \phi_{i}(x) \phi_{j}(x) d x=\delta_{i j}=\left\{\begin{array}{l}1, i=j \\ 0, i \neq j\end{array}\right.$, where $\delta_{i, j}$ is identified as Kronecker delta

Forbidden State and Direct Product: If ket $|\phi\rangle$ and ket $|\psi\rangle$ belongs to same Hilbert space H then direct product $|\phi\rangle \otimes|\psi\rangle$ and $\langle\phi| \otimes\langle\psi|$ are meaningless, they are void and Nonsensical. If ket $|\phi\rangle$ and ket $|\psi\rangle$ belongs to different Hilbert space H then direct product $|\phi\rangle \otimes|\psi\rangle$ and $\langle\phi| \otimes\langle\psi|$ are identified as direct product .

Triangle Inequality: If ket $|\phi\rangle$ and ket $|\psi\rangle$ belongs to same Hilbert space H

$$
\sqrt{\langle\psi+\phi \mid \psi+\phi\rangle} \leq \sqrt{\langle\psi \mid \psi\rangle}+\sqrt{\langle\phi \mid \phi\rangle}
$$

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
Cauchy Swartz inequality If ket $|\phi\rangle$ and ket $|\psi\rangle$ belongs to same Hilbert space H then

$$
|\langle\psi \mid \phi\rangle|^{2} \leq(\langle\psi \mid \psi\rangle)(\langle\phi \mid \phi\rangle)
$$

Proof: $0 \leq \| \phi\rangle-\left.\lambda|\psi\rangle\right|^{2}$ where $\lambda=\frac{\langle\phi \mid \psi\rangle}{\langle\psi \mid \psi\rangle}$ so $\lambda^{*}=\frac{\langle\psi \mid \phi\rangle}{\langle\psi \mid \psi\rangle}$

$$
\begin{aligned}
& 0 \leq \| \phi\rangle-\left.\lambda|\psi\rangle\right|^{2} \Rightarrow 0 \leq(|\phi\rangle-\lambda|\psi\rangle,|\phi\rangle-\lambda|\psi\rangle) \\
\Rightarrow & 0 \leq\langle\phi \mid \phi\rangle-\lambda\langle\phi \mid \psi\rangle-\lambda^{*}\langle\psi \mid \phi\rangle+\lambda^{*} \lambda\langle\psi \mid \psi\rangle \\
\Rightarrow & 0 \leq\langle\phi \mid \phi\rangle-\frac{\langle\phi \mid \psi\rangle}{\langle\psi \mid \psi\rangle} \cdot\langle\phi \mid \psi\rangle-\frac{\langle\psi \mid \phi\rangle}{\langle\psi \mid \psi\rangle}\langle\psi \mid \phi\rangle+\frac{\langle\psi \mid \phi\rangle}{\langle\psi \mid \psi\rangle} \cdot \frac{\langle\phi \mid \psi\rangle}{\langle\psi \mid \psi\rangle}\langle\psi \mid \psi\rangle \\
\Rightarrow & \langle\phi \mid \phi\rangle \leq-\frac{\langle\phi \mid \psi\rangle}{\langle\psi \mid \psi\rangle} \cdot\langle\phi \mid \psi\rangle-\frac{\langle\psi \mid \phi\rangle}{\langle\psi \mid \psi\rangle}\langle\psi \mid \phi\rangle+\frac{\langle\psi \mid \phi\rangle}{\langle\psi \mid \psi\rangle} \cdot \frac{\langle\phi \mid \psi\rangle}{\langle\psi \mid \psi\rangle}\langle\psi \mid \psi\rangle \\
\Rightarrow & \langle\phi \mid \phi\rangle \leq-\frac{\langle\phi \mid \psi\rangle}{\langle\psi \mid \psi\rangle} \cdot\langle\phi \mid \psi\rangle-\frac{\langle\psi \mid \phi\rangle}{\langle\psi \mid \psi\rangle}\langle\psi \mid \phi\rangle+\frac{\langle\psi \mid \phi\rangle}{\langle\psi \mid \psi\rangle} \cdot\langle\phi \mid \psi\rangle \\
\Rightarrow & \langle\phi \mid \phi\rangle \leq-\frac{\langle\phi \mid \psi\rangle}{\langle\psi \mid \psi\rangle} \cdot\langle\phi \mid \psi\rangle \Rightarrow\langle\phi \mid \phi\rangle\langle\psi \mid \psi\rangle \leq-\langle\psi \mid \phi\rangle \cdot\langle\phi \mid \psi\rangle \\
\Rightarrow & \langle\phi \mid \phi\rangle\langle\psi \mid \psi\rangle \geq\langle\psi \mid \phi\rangle \cdot\langle\phi \mid \psi\rangle \Rightarrow|\langle\psi \mid \phi\rangle|^{2} \leq(\langle\psi \mid \psi\rangle)(\langle\phi \mid \phi\rangle)
\end{aligned}
$$

Linear Independency

The vector $\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle,\left|\phi_{3}\right\rangle, \ldots .,\left|\phi_{N}\right\rangle$ are said to be linear independent if we find the coefficient $c_{1}, c_{2}, c_{3}, \ldots, c_{N}$ which satisfy the equation. $c_{1}\left|\phi_{1}\right\rangle+c_{2}\left|\phi_{2}\right\rangle+c_{3}\left|\phi_{3}\right\rangle+\ldots .+c_{N}\left|\phi_{N}\right\rangle=0$ and get the unique solution as
$c_{1}=c_{2}=c_{3}=\ldots . .=c_{N}=0$ then $\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle,\left|\phi_{3}\right\rangle, \ldots,\left|\phi_{N}\right\rangle$ is said to be linearly independent.
The dimension of a vector space is given by the maximum number of linearly independent vectors the space can have. For instance, if the maximum number of linearly independent vectors a space has is $N\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle,\left|\phi_{3}\right\rangle, \ldots,\left|\phi_{N}\right\rangle$ this space is said to be N-dimensional. In this N-dimensional vector space, any vector $|\psi\rangle$ can be expanded as a linear combination i.e. $|\psi\rangle=c_{1}\left|\phi_{1}\right\rangle+c_{2}\left|\phi_{2}\right\rangle+c_{3}\left|\phi_{3}\right\rangle+\ldots .+c_{N}\left|\phi_{N}\right\rangle$

Relation between orthogonal and linearly independent vectors

Every orthogonal vector is linearly independent but it is not necessary that every linear independent vector is orthogonal.

In quantum mechanics any vector $|\psi\rangle$ can be represented in orthonormal basis of vector $\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle,\left|\phi_{3}\right\rangle, \ldots\left|\phi_{i}\right\rangle \ldots\left|\phi_{j}\right\rangle \ldots .\left|\phi_{N}\right\rangle$ as
$|\psi\rangle=c_{1}\left|\phi_{1}\right\rangle+c_{2}\left|\phi_{2}\right\rangle+c_{3}\left|\phi_{3}\right\rangle+. . c_{i}\left|\phi_{i}\right\rangle \ldots c_{j}\left|\phi_{j}\right\rangle \ldots . .+c_{N}\left|\phi_{N}\right\rangle \Rightarrow|\psi\rangle=\sum_{i=1}^{N} c_{i}\left|\phi_{i}\right\rangle$
Hence it is given $\left\langle\phi_{i} \mid \phi_{j}\right\rangle=\delta_{i, j}$ so the term $c_{i}=\left\langle\phi_{i} \mid \psi\right\rangle$ and $c_{j}=\left\langle\phi_{j} \mid \psi\right\rangle$

So $|\psi\rangle=\sum_{i=1}^{N} c_{i}\left|\phi_{i}\right\rangle=\sum_{i=1}^{N}\left(\left\langle\phi_{i} \mid \psi\right\rangle\right)\left|\phi_{i}\right\rangle$ which means the coefficient c_{i} is scalar product between component basis vector $\left|\phi_{i}\right\rangle$ and vector $|\psi\rangle$. This trick can be only applied if vectors can be represented in orthonormal basis vector. Here basis vectors $\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle,\left|\phi_{3}\right\rangle, \ldots\left|\phi_{i}\right\rangle \ldots\left|\phi_{j}\right\rangle \ldots .\left|\phi_{N}\right\rangle$ are analogically orthonormal unit vectors in Euclidian space.

Example: If $\quad \psi(x)=\left\{\begin{array}{r}0, \quad x<0 \\ A \exp \left(-\frac{x}{a}+i k x\right), x>0\end{array}\right.$ where a, k are positive constant, then find the value of A such that $\psi(x)$ is normalized.
Solution: $\psi(x)=\left\{\begin{array}{c}0, \quad x<0 \\ A \exp \left(-\frac{x}{a}+i k x\right), x>0\end{array}\right.$ and $\psi^{*}(x)=\left\{\begin{array}{cc}0, & x<0 \\ A \exp \left(-\frac{x}{a}-i k x\right), x>0\end{array}\right.$
For normalization $(\psi, \psi)=1 \Rightarrow \int_{-\infty}^{\infty} \psi^{*}(x) \psi(x) d x=1$

$$
\begin{aligned}
& \int_{-\infty}^{0} 0 d x+\int_{0}^{\infty} A^{*} \exp \left(-\frac{x}{a}-i k x\right) A \exp \left(-\frac{x}{a}+i k x\right) d x=1 \Rightarrow|A|^{2} \int_{0}^{\infty} \exp \left(-\frac{2 x}{a}\right) d x=1 \\
& \Rightarrow A=\sqrt{\frac{2}{a}} \text { so } \psi(x)=\left\{\begin{array}{c}
0, \quad x<0 \\
\sqrt{\frac{2}{a}} \exp \left(-\frac{x}{a}+i k x\right), x>0
\end{array}\right. \text { is normalized function. }
\end{aligned}
$$

Example: Assume two function $\phi(x)$ and $\psi(x)$, which is defined as $\phi(x)=\left\{\begin{array}{l}a,-1 \leq x \leq 1 \\ 0, \text { otherwise }\end{array}\right.$ and $\psi(x)=\left\{\begin{array}{c}b x+c,-1 \leq x \leq 1 \\ 0, \text { otherwise }\end{array}\right.$. Find the condition on a, b, c (real numbers) such that $\phi(x)$ and $\psi(x)$ are orthonormal vector.
Solution: Condition such that $\phi(x)$ is normalized $(\phi, \phi)=\int_{-\infty}^{\infty} \phi^{*} \phi d x=1 \Rightarrow \int_{-1}^{1} a^{2} d x=1 \Rightarrow a=\frac{1}{\sqrt{2}}$ Condition such that $\phi(x)$ and $\psi(x)$ are orthogonal

$$
(\phi, \psi)=0 \Rightarrow \int_{-\infty}^{\infty} \phi^{*} \psi d x=0 \Rightarrow \int_{-1}^{1} \frac{1}{\sqrt{2}}(b x+c) d x=0 \Rightarrow c=0
$$

Condition for $\psi(x)$ is normalized $(\psi, \psi)=1 \Rightarrow \int_{-\infty}^{\infty} \psi^{*} \psi d x=0 \Rightarrow \int_{-1}^{1}(b x)^{2} d x=1 \Rightarrow b=\sqrt{\frac{3}{2}}$
So, $\phi(x)=\left\{\begin{array}{c}\frac{1}{\sqrt{2}},-1 \leq x \leq 1 \\ 0, \text { otherwise }\end{array}\right.$ and $\psi(x)=\left\{\begin{array}{c}\sqrt{\frac{3}{2}} x,-1 \leq x \leq 1 \\ 0, \text { otherwise }\end{array}\right.$ are orthonormal functions.

Example: function $\phi(x)=\exp \left(-\alpha x^{2}\right)$, where $-\infty<x<+\infty$, and $\psi(x)=x \exp \left(-\alpha x^{2}\right)$ where $-\infty<x<\infty$ belong to Hilbert space with variable x
(a) Find norms of $\phi(x)$ and $\psi(x)$ write expression of normalized $\phi(x)$ and $\psi(x)$.
(b) Prove that $\phi(x)$ and $\psi(x)$ are orthogonal.

Use the integration $\int_{0}^{\infty} x^{n} \exp \left(-\beta x^{2}\right) d x=\frac{1}{2} \cdot \frac{1}{\beta^{\frac{n+1}{2}}} \sqrt{\frac{n+1}{2}}$
Solution: (a) Norms of $\phi(x)$ is
$N_{1}=\sqrt{(\phi, \phi)},(\phi, \phi)=\int_{-\infty}^{\infty} \phi^{*}(x) \phi(x) d x \Rightarrow \int_{-\infty}^{\infty} \exp \left(-2 \alpha x^{2}\right) d x \Rightarrow 2 \times \frac{1}{2} \times\left(\frac{1}{2 \alpha}\right)^{1 / 2} \sqrt{\frac{1}{2}}=\left(\frac{1}{2 \alpha}\right)^{1 / 2} \sqrt{\pi}$
$N_{1}=\left(\frac{\pi}{2 \alpha}\right)^{1 / 4}$, so normalized constant $A_{1}=\frac{1}{N_{1}} \Rightarrow A_{1}=\left(\frac{2 \alpha}{\pi}\right)^{1 / 4}$
Normalized function $\phi(x)=\left(\frac{2 \alpha}{\pi}\right)^{1 / 4} \exp \left(-\alpha x^{2}\right)$
Norms of $\psi(x)$ is $N_{2}=\sqrt{(\psi, \psi)}$,
$(\psi, \psi)=\int_{-\infty}^{\infty} \psi^{*}(x) \psi(x) d x \Rightarrow \int_{-\infty}^{\infty} x^{2} \exp \left(-2 \alpha x^{2}\right) d x \Rightarrow 2 \times \frac{1}{2} \times\left(\frac{1}{2 \alpha}\right)^{3 / 2} \sqrt{\frac{3}{2}}=\left(\frac{1}{2 \alpha}\right)^{3 / 2} \cdot \frac{1}{2} \cdot \sqrt{\pi}$
$N_{2}=\left(\frac{1}{2}\right)^{1 / 2}\left(\frac{\pi^{1 / 4}}{(2 \alpha)^{3 / 4}}\right)$ so normalized constant $A_{2}=\frac{1}{N_{2}} \Rightarrow A_{1}=2^{1 / 2}\left(\frac{(2 \alpha)^{3}}{\pi}\right)^{1 / 4}$
Normalized function $\psi(x)=2^{1 / 2}\left(\frac{(2 \alpha)^{3}}{\pi}\right)^{1 / 4} x \exp \left(-\alpha x^{2}\right) \phi(x)$
(b) If ϕ and ψ are orthogonal, then $(\phi, \psi)=0$
$\Rightarrow A_{1} \cdot A_{2} \int_{-\infty}^{+\infty} e^{-\alpha x^{2}} x e^{-\alpha x^{2}} d x=0$

Example: (a) If $|\psi\rangle=A\left(\begin{array}{l}1 \\ i \\ 0\end{array}\right)$, Find the value of A such that $|\psi|$ is normalized.
Solution: (a) If ket vector is $|\psi\rangle=A\left(\begin{array}{l}1 \\ i \\ 0\end{array}\right)$ then bra vector $\langle\psi|=A^{*}\left(\begin{array}{ll}1-i & 0\end{array}\right)$
For normalization condition $\langle\psi \mid \psi\rangle=1$
$\Rightarrow A^{*}\left(\begin{array}{lll}1 & -i & 0\end{array}\right) \cdot A\left(\begin{array}{l}1 \\ i \\ 0\end{array}\right)=1 \Rightarrow|A|^{2}(1+1+0)=1 \Rightarrow|A|^{2}=\frac{1}{2} \Rightarrow A=\frac{1}{\sqrt{2}}$

Example: If $|\psi\rangle=a_{1}\left|\phi_{1}\right\rangle+a_{2}\left|\phi_{2}\right\rangle$ it is also given $\left\langle\phi_{i} \mid \phi_{j}\right\rangle=\delta_{i, j}$ find $\langle\psi \mid \psi\rangle$ and $|\psi|^{2}$.
Solution: If ket $|\psi\rangle=a_{1}\left|\phi_{1}\right\rangle+a_{2}\left|\phi_{2}\right\rangle$
$\langle\psi|=a_{1}^{*}\left\langle\phi_{1}\right|+a_{2}^{*}\left\langle\phi_{2}\right|$
$\langle\psi \mid \psi\rangle=a_{1}^{*} a_{1}\left\langle\phi_{1} \mid \phi_{1}\right\rangle+a_{1}^{*} a_{2}\left\langle\phi_{1} \mid \phi_{2}\right\rangle+a_{2}^{*} a_{1}\left\langle\phi_{2} \mid \phi_{1}\right\rangle+a_{2}^{*} a_{2}\left\langle\phi_{2} \mid \phi_{2}\right\rangle$
Hence $\left\langle\phi_{i} \mid \phi_{j}\right\rangle=\delta_{i, j}$ so $\left\langle\phi_{1} \mid \phi_{1}\right\rangle=1,\left\langle\phi_{2} \mid \phi_{2}\right\rangle=1,\left\langle\phi_{1} \mid \phi_{2}\right\rangle=0,\left\langle\phi_{2} \mid \phi_{1}\right\rangle=0$
$\langle\psi \mid \psi\rangle=a_{1}^{*} a_{1}+a_{2}^{*} a_{2}=\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}$ which is scalar number
$|\psi|^{2}=\psi^{*} \psi, \psi=a_{1} \phi_{1}+a_{2} \phi_{2}, \psi^{*}=a_{1}^{*} \phi_{1}^{*}+a_{2}^{*} \phi_{2}^{*}$
$\psi^{*} \psi=\left(a_{1}^{*} \phi_{1}^{*}+a_{2}^{*} \phi_{2}^{*}\right)\left(a_{1} \phi_{1}+a_{2} \phi_{2}\right)$
$|\psi|^{2}=a_{1}^{*} a_{1} \phi_{1}^{*} \phi_{1}+a_{1}^{*} a_{2} \phi_{1}^{*} \phi_{2}+a_{2}^{*} a_{1} \phi_{2}^{*} \phi_{1}+a_{2}^{*} a_{2} \phi_{2}^{*} \phi_{2}=\left|a_{1}\right|^{2}\left|\phi_{1}\right|^{2}+a_{1}^{*} a_{2} \phi_{1}^{*} \phi_{2}+a_{2}^{*} a_{1} \phi_{2}^{*} \phi_{1}+\left|a_{2}\right|^{2}\left|\phi_{2}\right|$
$|\psi|^{2}=\left|a_{1}\right|^{2}\left|\phi_{1}\right|^{2}+\left|a_{2}\right|^{2}\left|\phi_{1}\right|^{2}+2 \operatorname{Re}\left(a_{1}^{*} a_{2} \phi_{1}^{*} \phi_{2}\right)$ which is a function

Example: If $\left|\psi_{1}\right\rangle=a_{1}\left|\phi_{1}\right\rangle+a_{2}\left|\phi_{2}\right\rangle$ and $\left|\psi_{2}\right\rangle=b_{1}\left|\phi_{1}\right\rangle+b_{2}\left|\phi_{2}\right\rangle$ it is given $\left\langle\phi_{i} \mid \phi_{j}\right\rangle=\delta_{i, j}$ find the condition such that $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ are orthonormal.

Solution: Condition such that $\left|\psi_{1}\right\rangle$ is normalized $\left\langle\psi_{1} \mid \psi_{1}\right\rangle=1$
$\left\langle\psi_{1} \mid \psi_{1}\right\rangle=1 \Rightarrow a_{1}^{*} a_{1}\left\langle\phi_{1} \mid \phi_{1}\right\rangle+a_{2}^{*} a_{2}\left\langle\phi_{2} \mid \phi_{2}\right\rangle+a_{1}^{*} a_{2}\left\langle\phi_{1} \mid \phi_{2}\right\rangle+a_{2}^{*} a_{1}\left\langle\phi_{2} \mid \phi_{1}\right\rangle=1$ if $\left\langle\phi_{i} \mid \phi_{j}\right\rangle=\delta_{i, j}$
$\left\langle\phi_{1} \mid \phi_{1}\right\rangle=1,\left\langle\phi_{2} \mid \phi_{2}\right\rangle=1,\left\langle\phi_{1} \mid \phi_{2}\right\rangle=0,\left\langle\phi_{2} \mid \phi_{1}\right\rangle=0$
$\left\langle\psi_{1} \mid \psi_{1}\right\rangle=1 \Rightarrow\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}=1$
$\left\langle\psi_{2} \mid \psi_{2}\right\rangle=1 \Rightarrow b_{1}^{*} b_{1}\left\langle\phi_{1} \mid \phi_{1}\right\rangle+b_{2}^{*} b_{2}\left\langle\phi_{2} \mid \phi_{2}\right\rangle+b_{1}^{*} b_{2}\left\langle\phi_{1} \mid \phi_{2}\right\rangle+b_{2}^{*} b_{1}\left\langle\phi_{2} \mid \phi_{1}\right\rangle=1$
if $\left\langle\phi_{i} \mid \phi_{j}\right\rangle=\delta_{i, j},\left\langle\phi_{1} \mid \phi_{1}\right\rangle=1,\left\langle\phi_{2} \mid \phi_{2}\right\rangle=1,\left\langle\phi_{1} \mid \phi_{2}\right\rangle=0,\left\langle\phi_{2} \mid \phi_{1}\right\rangle=0$

$$
b_{1}^{*} b_{1}+b_{2}^{*} b_{2}=1 \Rightarrow\left|b_{1}\right|^{2}+\left|b_{2}\right|^{2}=1
$$

$\left\langle\psi_{1} \mid \psi_{2}\right\rangle=0 \Rightarrow a_{1}^{*} b_{1}\left\langle\phi_{1} \mid \phi_{1}\right\rangle+a_{2}^{*} b_{2}\left\langle\phi_{2} \mid \phi_{2}\right\rangle+a_{1}^{*} b_{2}\left\langle\phi_{1} \mid \phi_{2}\right\rangle+a_{2}^{*} b_{1}\left\langle\phi_{2} \mid \phi_{1}\right\rangle=0$
if $\left\langle\phi_{i} \mid \phi_{j}\right\rangle=\delta_{i, j},\left\langle\phi_{1} \mid \phi_{1}\right\rangle=1,\left\langle\phi_{2} \mid \phi_{2}\right\rangle=1,\left\langle\phi_{1} \mid \phi_{2}\right\rangle=0,\left\langle\phi_{2} \mid \phi_{1}\right\rangle=0$
$\left\langle\psi_{1} \mid \psi_{2}\right\rangle=0 \Rightarrow a_{1}^{*} b_{1}+a_{2}^{*} b_{2}=0$
Similarly, $\left\langle\psi_{2} \mid \psi_{1}\right\rangle=0 \Rightarrow b_{1}^{*} a_{1}+b_{2}^{*} a_{2}=0$

Example: The vector in three-dimensional space is defined as
$\left|\phi_{1}\right\rangle=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
$\left|\phi_{2}\right\rangle=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$
$\left|\phi_{3}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)$. Prove that they are linearly independent
For $\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle,\left|\phi_{3}\right\rangle$ linearly independent $c_{1}\left|\phi_{1}\right\rangle+c_{2}\left|\phi_{2}\right\rangle+c_{3}\left|\phi_{3}\right\rangle=0$
$c_{1}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+c_{2}\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)+c_{3}\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)=0$ solving the equation we get $c_{1}=0, c_{2}+c_{3}=0, c_{2}-c_{3}=0$
Which has unique solution $c_{1}=c_{2}=c_{3}=0$ so they are linearly independent

Example: Prove that $\phi_{1}=x, \phi_{2}=x^{2}, \phi_{3}=x^{3}$ are linearly independent

$$
c_{1} \phi_{1}+c_{2} \phi_{2}+c_{3} \phi_{3}=0 \Rightarrow c_{1} x+c_{2} x^{2}+c_{3} x^{3}=0
$$

equating coefficient, we get $c_{1}=c_{2}=c_{3}=0$ which ensure that x, x^{2}, x^{3} are linearly independent Example: Prove that $\phi_{1}=\exp -x^{2}, \phi_{2}=x \exp \left(-x^{2}\right)$

$$
c_{1} \phi_{1}+c_{2} \phi_{2}=0 \Rightarrow \exp \left(-\alpha x^{2}\right)\left[c_{1} x+c_{2}\right]=0 \text { hence } \exp \left(-\alpha x^{2}\right) \neq 0
$$

$\left[c_{1} x+c_{2}\right]=0 \Rightarrow c_{1}=c_{2}=0$ which ensure $\phi_{1}=\exp -x^{2}, \phi_{2}=x \exp \left(-x^{2}\right)$ are linearly independent.

Example: (a) Prove that vector $\left|\phi_{1}\right\rangle=\binom{1}{0}$ and $\left|\phi_{2}\right\rangle=\binom{1}{1}$ are linearly independent but not orthogonal
(b) Prove that vector $\left|\phi_{1}\right\rangle=\binom{1}{-1}$ and $\left|\phi_{2}\right\rangle=\binom{1}{1}$ are orthogonal. Also check their linearly independency.
Solution: (a) $c_{1}\left|\phi_{1}\right\rangle+c_{2}\left|\phi_{2}\right\rangle=0 \Rightarrow c_{1}\binom{1}{0}+c_{2}\binom{1}{1}=0$
$\Rightarrow c_{1}+c_{2}=0$ and $c_{2}=0$ which ensure $c_{1}=0, c_{2}=0$ that means $\left|\phi_{1}\right\rangle=\binom{1}{0}$ and $\left|\phi_{2}\right\rangle=\binom{1}{1}$ are linearly independent.
Now we check orthogonal relation $\left\langle\phi_{1} \mid \phi_{2}\right\rangle=0$
$\Rightarrow\left\langle\phi_{1} \mid \phi_{2}\right\rangle=\left(\begin{array}{ll}1 & 0\end{array}\right)\binom{1}{1}=1 \neq 0$ which means $\left|\phi_{1}\right\rangle=\binom{1}{0}$ and $\left|\phi_{2}\right\rangle=\binom{1}{1}$ are not orthogonal
H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

So it is not necessary that linear independent vectors are orthogonal.
(b) If $\left|\phi_{1}\right\rangle=\binom{1}{-1}$ and $\left|\phi_{2}\right\rangle=\binom{1}{1}$ we check orthogonal relation $\left\langle\phi_{1} \mid \phi_{2}\right\rangle=0$
$\Rightarrow\left\langle\phi_{1} \mid \phi_{2}\right\rangle=\left(\begin{array}{ll}1 & 1\end{array}\right)\binom{1}{-1}=1 \times 1+1 \times(-1)=0$, which means $\left|\phi_{1}\right\rangle=\binom{1}{1}$ and $\left|\phi_{2}\right\rangle=\binom{1}{-1}$ are
orthogonal.
So, if vectors are orthogonal then they must be linearly independent.
Let's check there independency

$$
c_{1}\left|\phi_{1}\right\rangle+c_{2}\left|\phi_{2}\right\rangle=0 \Rightarrow c_{1}\binom{1}{1}+c_{2}\binom{1}{-1}=0
$$

$\Rightarrow c_{1}+c_{2}=0$ and $c_{1}-c_{2}=0$ which ensure $c_{1}=0, c_{2}=0$ that means $\left|\phi_{1}\right\rangle=\binom{1}{1}$ and $\left|\phi_{2}\right\rangle=\binom{1}{-1}$
are linearly independent.

