

Chapter 1 Tools of Quantum Mechanics

6. Probability Density

If x is any random variable then any function f(x) can be treated as probability density if

 $\int_{-\infty}^{+\infty} f(x) dx = 1 \text{ means Area under probability density curve } f(x) \text{ is } 1$

Probability such that system has value of x between a to b

i.e.
$$P(a < x < b) = \frac{\int_{a}^{b} f(x) dx}{\int_{-\infty}^{\infty} f(x) dx}$$

average value of x if probability density function is f(x) is given by $\langle x \rangle = \frac{\int_{-\infty}^{\infty} xf(x)dx}{\int_{0}^{\infty} f(x)dx}$

Pravegae Education CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

USIK NET-SIG, S..., average value of x^2 if probability density function is f(x) is given by $\langle x^2 \rangle = \frac{\int_{-\infty}^{\infty} x^2 f(x) dx}{\int_{-\infty}^{\infty} f(x) dx}$

standard deviation is measurement of dispersion given by Δx i.e. $\Delta x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$ the variance is $(\Delta x)^2 \ge 0$ variance so for any random variable process $\langle x^2 \rangle \ge \langle x \rangle^2$

Example: The probability density is defined as
$$\begin{cases} f(x) = x, \quad 0 < x < 1\\ 0, \quad otherwise \end{cases}$$
(a) Find the Probability such that $0 < x < \frac{1}{2}$.
(b) Find $\langle x \rangle$, $\langle x \rangle^2$ and Δx .
Solution: (a) $p\left(0 \le x \le \frac{1}{2}\right) = \frac{\int_{0}^{1/2} f(x)dx}{\int_{0}^{1} f(x)dx} = \frac{\int_{0}^{1/2} xdx}{\int_{0}^{1} xdx} = \frac{1}{4}$
 $\langle x \rangle = \frac{\int_{0}^{1} xf(x)dx}{\int_{0}^{1} f(x)dx} = \frac{\int_{0}^{1} xxdx}{\int_{0}^{1} g(x)dx} = \frac{1}{2} = \frac{1}{2}$ and $\langle x^2 \rangle = \frac{\int_{0}^{1} x^2f(x)dx}{\int_{0}^{1} f(x)dx} = \frac{\int_{0}^{1} x^2xdx}{\int_{0}^{1} ydx} = \frac{1}{4} = \frac{2}{4} = \frac{1}{2}$
 $\Delta x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = \Delta x = \sqrt{\frac{1}{2} - \frac{4}{9}} = \sqrt{\frac{1}{18}}$
Example: $f(x) = \begin{cases} x \exp\left(-\frac{x}{\lambda}\right), \quad for \ x \ge 0\\ 0 \quad , \quad otherwise \end{cases}$, where $\lambda > 0$

(a) Find then the probability that system has value $x \ge \lambda$ assume $\lambda > 0$

(b) Find $\langle x
angle, \langle x^2
angle\,$ and most probable value of x

(c) Find the most probable value of x.

Solution: (a)
$$p(x \ge \lambda) = \frac{\int_{\lambda}^{\infty} \exp(-\frac{x}{\lambda}) dx}{\int_{0}^{\infty} \exp(-\frac{x}{\lambda}) dx} = \frac{1}{e}$$

(b) $\langle x \rangle = \frac{\int_{-\infty}^{\infty} xf(x) dx}{\int_{-\infty}^{\infty} f(x) dx} = \frac{\int_{0}^{\infty} x x \exp(-\frac{x}{\lambda}) dx}{\int_{0}^{\infty} x \exp(-\frac{x}{\lambda}) dx} = \frac{\lambda^{3} \overline{3}}{\lambda^{2} \overline{2}} = 2\lambda$

H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016 #: +91-89207-59559

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

$$\langle x^2 \rangle = \frac{\int_{-\infty}^{\infty} x^2 f(x) dx}{\int_{-\infty}^{\infty} f(x) dx} = \frac{\int_{0}^{\infty} x^2 x \exp\left(-\frac{x}{\lambda}\right) dx}{\int_{0}^{\infty} x \exp\left(-\frac{x}{\lambda}\right) dx} = \frac{\lambda^4 |\overline{4}|}{\lambda^2 |\overline{2}|} = 6\lambda^2$$
(c) For most probable value $\frac{df}{dx} = 0 \Rightarrow \frac{dx \exp\left(-\frac{x}{\lambda}\right)}{dx} = 0$

$$\Rightarrow \exp\left(-\frac{x}{\lambda}\right) + x\left(-\frac{1}{\lambda}\right) \exp\left(-\frac{x}{\lambda}\right) = 0 \Rightarrow \exp\left(-\frac{x}{\lambda}\right) \left(1 - \frac{x}{\lambda}\right) = 0$$
Hence $\exp\left(-\frac{x}{\lambda}\right) \neq 0$ so $\left(1 - \frac{x}{\lambda}\right) = 0 \Rightarrow x = \lambda$ we can check $\frac{d^2 f}{dx^2}\Big|_{x=\lambda} < 0$ so $x = \lambda$ is $f(x)$ will be maximum $f(\lambda) = \frac{\lambda}{e}$