Chapter 1 Tools of Quantum Mechanics

6. Probability Density

If x is any random variable then any function $f(x)$ can be treated as probability density if
$\int_{-\infty}^{+\infty} f(x) d x=1$ means Area under probability density curve $f(x)$ is 1
Probability such that system has value of x between a to b
i.e. $P(a<x<b)=\frac{\int_{a}^{b} f(x) d x}{\int_{-\infty}^{\infty} f(x) d x}$
average value of x if probability density function is $f(x)$ is given by $\langle x\rangle=\frac{\int_{-\infty}^{\infty} x f(x) d x}{\int_{-\infty}^{\infty} f(x) d x}$
average value of x^{2} if probability density function is $f(x)$ is given by $\left\langle x^{2}\right\rangle=\frac{\int_{-\infty}^{\infty} x^{2} f(x) d x}{\int_{-\infty}^{\infty} f(x) d x}$ standard deviation is measurement of dispersion given by Δx i.e. $\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}$ the variance is $(\Delta x)^{2} \geq 0$ variance so for any random variable process $\left\langle x^{2}\right\rangle \geq\langle x\rangle^{2}$

Example: The probability density is defined as $\left\{\begin{array}{c}f(x)=x, \quad 0<x<1 \\ 0, \text { otherwise }\end{array}\right.$
(a) Find the Probability such that $0<x<\frac{1}{2}$.
(b) Find $\langle x\rangle,\langle x\rangle^{2}$ and Δx.

Solution: (a) $p\left(0 \leq x \leq \frac{1}{2}\right)=\frac{\int_{0}^{1 / 2} f(x) d x}{\int_{0}^{1} f(x) d x}=\frac{\int_{0}^{1 / 2} x d x}{\int_{0}^{1} x d x}=\frac{1}{4}$
$\langle x\rangle=\frac{\int_{0}^{1} x f(x) d x}{\int_{0}^{1} f(x) d x}=\frac{\int_{0}^{1} x x d x}{\int_{0}^{1} x d x}=\frac{\frac{1}{3}}{\frac{1}{2}}=\frac{2}{3}$ and $\left\langle x^{2}\right\rangle=\frac{\int_{0}^{1} x^{2} f(x) d x}{\int_{0}^{1} f(x) d x}=\frac{\int_{0}^{1} x^{2} x d x}{\int_{0}^{1} x d x}=\frac{\frac{1}{4}}{\frac{1}{2}}=\frac{2}{4}=\frac{1}{2}$
$\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}=\Delta x=\sqrt{\frac{1}{2}-\frac{4}{9}}=\sqrt{\frac{1}{18}}$

Example: $f(x)=\left\{\begin{array}{cc}x \exp \left(-\frac{x}{\lambda}\right), & \text { for } x \geq 0 \\ 0, & \text { otherwise }\end{array}\right.$, where $\lambda>0$
(a) Find then the probability that system has value $x \geq \lambda$ assume $\lambda>0$
(b) Find $\langle x\rangle,\left\langle x^{2}\right\rangle$ and most probable value of x
(c) Find the most probable value of x.

Solution: (a) $p(x \geq \lambda)=\frac{\int_{\lambda}^{\infty} \exp \left(-\frac{x}{\lambda}\right) d x}{\int_{0}^{\infty} \exp \left(-\frac{x}{\lambda}\right) d x}=\frac{1}{e}$
(b) $\langle x\rangle=\frac{\int_{-\infty}^{\infty} x f(x) d x}{\int_{-\infty}^{\infty} f(x) d x}=\frac{\int_{0}^{\infty} x \cdot x \exp \left(-\frac{x}{\lambda}\right) d x}{\int_{0}^{\infty} x \exp \left(-\frac{x}{\lambda}\right) d x}=\frac{\lambda^{3} \sqrt{3}}{\lambda^{2} \sqrt{2}}=2 \lambda$

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
$\left\langle x^{2}\right\rangle=\frac{\int_{-\infty}^{\infty} x^{2} f(x) d x}{\int_{-\infty}^{\infty} f(x) d x}=\frac{\int_{0}^{\infty} x^{2} \cdot x \exp \left(-\frac{x}{\lambda}\right) d x}{\int_{0}^{\infty} x \exp \left(-\frac{x}{\lambda}\right) d x}=\frac{\lambda^{4} \sqrt{4}}{\lambda^{2} \sqrt{2}}=6 \lambda^{2}$
(c) For most probable value $\frac{d f}{d x}=0 \Rightarrow \frac{d x \exp \left(-\frac{x}{\lambda}\right)}{d x}=0$
$\Rightarrow \exp \left(-\frac{x}{\lambda}\right)+x\left(-\frac{1}{\lambda}\right) \exp \left(-\frac{x}{\lambda}\right)=0 \Rightarrow \exp \left(-\frac{x}{\lambda}\right)\left(1-\frac{x}{\lambda}\right)=0$
Hence $\exp \left(-\frac{x}{\lambda}\right) \neq 0$ so $\left(1-\frac{x}{\lambda}\right)=0 \Rightarrow x=\lambda$ we can check $\left.\frac{d^{2} f}{d x^{2}}\right|_{x=\lambda}<0$ so $x=\lambda$ is $f(x)$ will be maximum $f(\lambda)=\frac{\lambda}{e}$

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

