

GS-2010 (Physics)

TATA INSTITUTE OF FUNDAMENTAL RESEARCH

Written Test in PHYSICS - December 19, 2009

Please read all instructions carefully before you attempt the questions.

- 1. Please fill-in details about name, reference code etc. on the question paper and answer sheet. The Answer Sheet is machine-readable. Read the instructions given on the reverse of the answer sheet before you start filling it up. Use only HB pencils to fill-in the answer sheet.
- 2. Indicate your ANSWER ON THE ANSWER SHEET by blackening the appropriate circle for each question. *Do not mark more than one circle for any question*: this will be treated as a wrong answer.
- 3. This test comes in two sections, **Section A** and **Section** B, both of which contain multiple choice-type questions. Only ONE of the options given at the end of each question is correct. Section A contains 20 questions, each with 4 options, and Section B contains 8 questions, each with 6 options. The maximum marks are 60 for Section A plus 40 for Section B, totaling to 100. Marking shall be as follows:
- (i) If the answer is correct: +3 marks in Section A; +5 marks in Section B
- (ii) If the answer is incorrect: -1 mark in both Section A & B
- (iii) If the answer is **not attempted**: 0 marks in both Section A & B
- (iv) If more than one box is **marked**: 0 marks in both Section A & B Note that negative marking as indicated above will be implemented.
- 4. As a rough guideline, the time spent on questions in Section A should be about 5 minutes each; questions in Section B should take about 10 minutes each. Obviously, some questions may take a little less time while others may require a little more.
- 5. We advise you to first mark the correct answers on the QUESTION PAPER and then to TRANSFER these to the ANSWER SHEET only when you are sure of your choice.
- 6. Rough work may be done on blank pages of the question paper. If needed, you may ask for extra rough sheets from an Invigilator.
- 7. **Use of calculators is permitted**. Calculator which plots graphs is NOT allowed. Multiple-use devices such as cell phones, smart phones etc., CANNOT be used for this purpose.

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

A SECTION: 20 x 3= 60 Marks

Q1. The matrix

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

can be related by a similarity transformation to the matrix

(a)
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 2 & 1 & 0 \\ 1 & -1 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

(c)
$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix}$$

(d)
$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Q2. A car tyre is slowly pumped up to a pressure of 2 atmospheres in an environment at 15° C. At this point, it bursts. Assuming the sudden expansion of the air (a mixture of O₂ and N₂) that was inside the tyre to be adiabatic, its temperature after the burst is

(a)
$$-55^{\circ}$$
 C

(b)
$$-37^{\circ}$$
 C

(c)
$$-26^{\circ}$$
 C

(d)
$$+ 9^{\circ}$$
 C

Q3. A small meteor approaches the Earth. When it is at a large distance, it has velocity v_{∞} and impact parameter b. If R_e is the radius of the Earth and v_0 is the escape velocity, the condition for the meteor to strike the Earth is

(a)
$$b < R_e \sqrt{1 - (v_0 / v_\infty)^2}$$

(b)
$$b > R_e \sqrt{1 + (v_0 / v_\infty)^2}$$

(c)
$$b < R_e \sqrt{1 + (v_0 / v_\infty)^2}$$

(d)
$$b = R_e (v_0 / v_\infty)$$

Q4. Consider a very, very thin wire of uniformly circular cross section. The diameter of the wire is of the order of microns. The correct equipment required to measure the precise value of resistivity of this wire is

- (a) ammeter, voltmeter, scale, slide calipers
- (b) ammeter, magnet, screw gauge, thermometer
- (c) voltmeter, magnet, screw gauge, scale
- (d) ammeter, voltmeter, scale, monochromatic laser source

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

Q5. A function f(x) is defined in the range $-1 \le x \le 1$ by

$$f(x) = \begin{cases} 1 - x & \text{for } x \ge 0 \\ 1 + x & \text{for } x < 0 \end{cases}$$

The first terms in the Fourier series approximating this function are

(a)
$$\frac{1}{2} + \frac{4}{\pi^2} \cos \pi x + \frac{4}{9\pi^2} \cos 3\pi x + \dots$$
 (b) $\frac{1}{2} + \frac{4}{\pi^2} \sin \pi x + \frac{4}{9\pi^2} \sin 3\pi x + \dots$

(b)
$$\frac{1}{2} + \frac{4}{\pi^2} \sin \pi x + \frac{4}{9\pi^2} \sin 3\pi x + \dots$$

(c)
$$\frac{4}{\pi^2}\cos \pi x + \frac{4}{9\pi^2}\cos 3\pi x + \dots$$

(c)
$$\frac{4}{\pi^2}\cos \pi x + \frac{4}{9\pi^2}\cos 3\pi x + \dots$$
 (d) $\frac{1}{2} - \frac{4}{\pi^2}\cos \pi x + \frac{4}{9\pi^2}\cos 3\pi x - \dots$

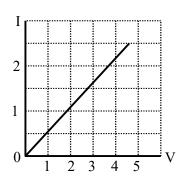
- A lead container contains 1 gm of a $^{60}_{27}\mathrm{Co}$ radioactive source. It is known that a $^{60}_{27}\mathrm{Co}$ nucleus Q6. emits a θ particle of energy 316 KeV followed by two γ emissions of energy 1173 and 1333 KeV respectively. Which of the following experimental methods would be the best way to determine the lifetime of this $^{60}_{27}\mathrm{Co}$ source?
 - (a) Measure the change in temperature of the source
 - (b) Measure the weight of the source now and again after one year
 - (c) Measure the recoil momentum of the nucleus during θ emission
 - (d) Measure the number of γ photons emitted by this source
- Q7. A beam of hydrogen molecules travels in the z direction with a kinetic energy of 1 eV. The molecules are in an excited state, from which they decay and dissociate into two hydrogen atoms. When one of the dissociated atoms has its final velocity perpendicular to the z direction, its kinetic energy is always 0.8 eV. The energy released in the dissociative reaction is

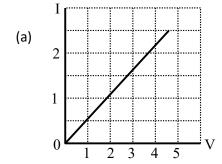
Q8. Two parallel plates of metal sandwich a dielectric pad of thickness d, forming an ideal capacitor of capacitance C. The dielectric pad is elastic, having a spring constant k. If an ideal battery of voltage V across its terminals is connected to the two plates of this capacitor, the fractional change $\delta d/d \ll 1$ in the gap between the plates is

$$\text{(b)} + \frac{\frac{1}{2}CV}{kd^2}$$

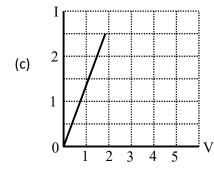
(c)
$$-\frac{\frac{1}{2}CV^2}{kd^2 + CV^2}$$

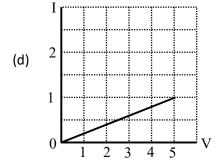
(d)
$$-\frac{\frac{1}{2}CV^2}{kd^2-CV^2}$$

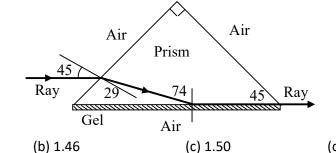

3




Education


CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics # 8920759559, 9971585002 | www.pravegaa.com

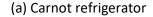

- Q9. When white light is scattered from a liquid, a strong absorption line is seen at 400 nm, and two emission lines are observed, one of which is at 500 nm, and another in the infra-red portion of the spectrum. The wavelength of this second emission line is
 - (a) 900 nm
- (b) 2000 nm
- (c) 100 nm
- (d) 222 nm
- Q10. A detector is used to count the number of γ rays emitted by a radioactive source. If the number of counts recorded in exactly 20 seconds is 10000, the error in the counting rate per second is
 - $(a) \pm 5.0$
- (b) ± 22.4
- $(c) \pm 44.7$
- $(d) \pm 220.0$
- Q11. Consider a standard chess board with 8x8 squares. A piece starts from the lower left corner, which we shall call Square (1, 1). A single move of this piece corresponds to either one step right, i.e. to Square (1, 2) or one step forwards, i.e. to Square (2, 1). If it continues to move according to these rules, the number of different paths by which the piece can reach the Square (5, 5) starting from the Square (1, 1) is
 - (a) 120
- (b) 72
- (c) 70
- (d) 45
- Q12. The uppermost graph in the set below shows the variation of current v/s voltage applied across a copper conductor at temperature T_1 . Which of the graphs below marked (a), (b), (c) or (d) will show the possible variation of the I–V curve for the same conductor at another temperature $T_2 > T_1$?

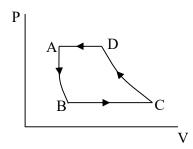


Q13. A ray of light is incident on a right-angled prism as shown in the figure below. The lower surface of this prism is coated with a gel. If the incident ray makes angles (marked in degrees) as shown in the figure, the refractive index of the gel must be

(a) 1.40

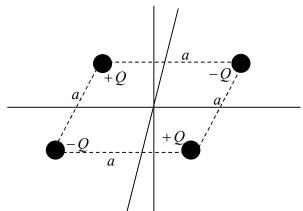
- (d) 1.52
- Q14. A particle P_1 is confined in a one-dimensional infinite potential well with walls at $x = \pm 1$. Another particle P_2 is confined in a one-dimensional infinite potential well with walls at x = 0, 1. Comparing the two particles, one can conclude that
 - (a) the no. of nodes in the n^{th} excited state of P_1 is twice that of P_2
 - (b) the no. of nodes in the n^{th} excited state of P_1 is half that of P_2
 - (c) the energy of the n^{th} level of P_1 is the same as that of P_2
 - (d) the energy of the n^{th} level of P_1 is one quarter of that of P_2
- Q15. A charged particle is in the ground state of a one-dimensional harmonic oscillator potential, generated by electrical means. If the power is suddenly switched off, so that the potential disappears, then, according to quantum mechanics,
 - (a) the particle will shoot out of the well and move out towards infinity in one of the two possible directions
 - (b) the particle will stop oscillating and as time increases it may be found farther and farther away from the centre of the well
 - (c) the particle will keep oscillating about the same mean position but with increasing amplitude as time increases
 - (d) the particle will undergo a transition to one of the higher excited states of the harmonic oscillator


Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com


Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics # 8920759559, 9971585002 | www.pravegaa.com

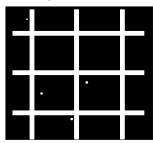
Q16. The pV diagram given below represents a


- (b) Carnot engine
- (c) gas turbine refrigerator
- (d) gas turbine engine

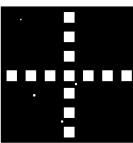
Q17. In the laboratory, four point charges +Q, -Q, +Q, -Q are placed at the four ends of a horizontal square of side a, as shown in the figure below. The number of neutral points (where the electric

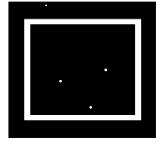
field vanishes) is

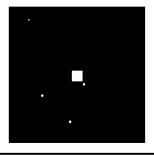
- (a) ∞
- (b) 4
- (c) 1
- (d) zero



Q18. Coherent monochromatic light falling through a small aperture produced a Fraunhofer diffraction pattern as shown in the figure.


By looking at this diffraction pattern carefully one can guess that the shape of the aperture was

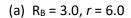

(a)


(b)

(c)

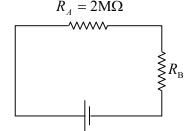
(d)

H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016 #: +91-89207-59559, 99715-85002


Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

legation Education

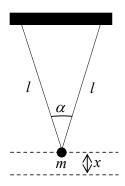
CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics #8920759559, 9971585002 | www.pravegaa.com


Q19. In the circuit given below, a person measures 9.0 V across the battery, 3.0 V across the 2 M Ω resistor R_A and 4.5 V across the unknown resistor R_B, using an ordinary voltmeter which has a finite input resistance r. Assuming that the battery has negligible internal resistance, it follows that (i) the resistance R_B and and (ii) the input resistance r of the voltmeter are, in M Ω ,

(b)
$$R_B = 2.5, r = 7.5$$

(c)
$$R_B = 4.0, r = 12.0$$

(d)
$$R_B = 4.5$$
, $r = 10.0$


Q20. A heavy mass m is suspended from two identical steel wires of length I, radius r and Young's modulas Y, as shown in the figure below. When the mass is pulled down by a distance x (x << I) and released, it undergoes elastic oscillations in the vertical direction with a time period

(a)
$$\frac{2\pi}{r} \sqrt{\frac{ml}{2Y \cos^2(\alpha/2)}}$$

(b)
$$2\pi\sqrt{\frac{l\cos(\alpha/2)}{g}}$$

(c)
$$\sqrt{\frac{2\pi ml}{Yr^2}}$$

(d)
$$\frac{2\pi}{r} \sqrt{\frac{mgl}{2Y}}$$

B SECTION: (8 x 5=40 Marks)

Q1. The wave function ψ of a quantum mechanical system described by a Hamiltonian \hat{H} can be written as a linear combination of Φ_1 and Φ_2 which are the eigenfunction of \hat{H} with eigenvalues E_1 and E_2 respectively. At t=0, the system is prepared in the state $\psi_0=\frac{4}{5}\Phi_1+\frac{3}{5}\Phi_2$ and then allowed to evolve with time. The wavefunction at time $T=\frac{1}{2}h/(E_1-E_2)$ will be (accurate to within a phase)

(a)
$$\frac{4}{5}\Phi_1 + \frac{3}{5}\Phi_2$$

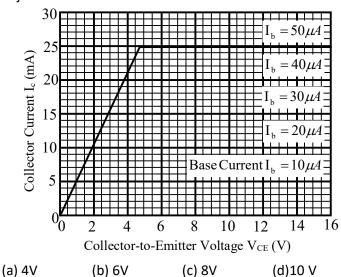
(c)
$$\frac{4}{5}\Phi_1 - \frac{3}{5}\Phi_2$$

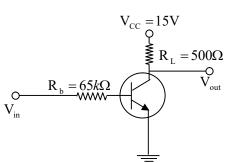
(e)
$$\frac{3}{5}\Phi_1 + \frac{4}{5}\Phi_2$$

(f)
$$\frac{3}{5}\Phi_1 - \frac{4}{5}\Phi_2$$

- Q2. Light transmitted along an optical fibre incurs losses due to Rayleigh scattering from inhomogeneities. If a fibre of given length transmits 50% of the monochromatic light coupled into it at a wavelength of 1350 nm, the transmitted fraction for the same fibre at 1550 nm will be
 - (a) 55%
- (b) 57%
- (c) 62%
- (d) 67%
- (e) 74%
- (f) 87%
- A quantum system has three energy levels-0.12 eV, -0.2 eV and -0.44 eV respectively. Three Q3. electrons are distributed among these levels. At a temperature of 1727° C the system has total energy -0.68 eV. The free energy of the system is approximately
 - (a) + 1.5 eV

- (b) +0.3 eV
- (c) -0.1 eV


(d) -0.3 eV


- (e) -1.0 eV
- (f) -1.5 eV
- Q4. An atom is capable of existing in two states: a ground state of mass M and an excited state of mass $M + \Delta$. If the transition from the ground state to the excited state proceeds by the absorption of a photon, the photon frequency in the laboratory frame (where the atom is initially at rest) is
 - (a) $\frac{\Delta c^2}{h}$

(b) $\frac{\Delta c^2}{h} \left(1 + \frac{\Delta}{2M} \right)$

(c) $\frac{Mc^2}{h}$

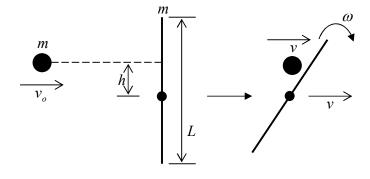
- (d) $\frac{\Delta c^2}{h} \left(1 \frac{\Delta}{2M} \right)$ (e) $\frac{Mc^2}{h} \left(1 + \frac{\Delta}{2M} \right)$
- (f) $\frac{Mc^2}{h} \left(1 \frac{\Delta}{2M}\right)$
- Q5. A plot of the common-emitter characteristics of a silicon n-p-n transistor is shown below. Given this information and assuming that there will be a 0.7 V drop across a forward biased silicon p-n junction, the approximate value of the output voltage V_{out} for an input voltage $V_{in} = 2V$ in the adjacent circuit will be

(e) 12V

(f) 14V

Q6. Measurement of the electric field (E) and the magnetic field (B) in a plane-polarized electromagnetic wave in vacuum led to the following:

$$\frac{\partial E}{\partial x} = \frac{\partial E}{\partial y} = 0,$$
 $\frac{\partial E}{\partial z} = -\frac{\partial B}{\partial t}$


$$\frac{\partial E}{\partial z} = -\frac{\partial B}{\partial t}$$

$$\frac{\partial B}{\partial x} = \frac{\partial B}{\partial y} = 0,$$
 $\frac{\partial B}{\partial z} = \frac{\partial E}{\partial t}$

$$\frac{\partial B}{\partial z} = \frac{\partial E}{\partial t}$$

It follows that

- (a) $\overline{E} = E\hat{i}, \overline{B} = B\hat{j}$ and the wave was travelling along \hat{k}
- (b) $\overline{E} = E\hat{j}, \overline{B} = B\hat{i}$ and the wave was travelling along \hat{k}
- (c) $\overline{E} = E\hat{j}, \overline{B} = B\hat{k}$ and the wave was travelling along $-\hat{i}$
- (d) $\overline{E} = E\hat{k}, \overline{B} = B\hat{i}$ and the wave was travelling along \hat{j}
- (e) $\overline{E} = E\hat{i}, \overline{B} = B\hat{k}$ and the wave was travelling along $-\hat{j}$
- (f) the wave was travelling along $\pm \hat{k}$ but direction of \vec{E} and \vec{B} are not uniquely defined
- Q7. A mass m travels in a straight line with velocity v_0 perpendicular to a uniform stick of mass mand length L, which is initially at rest. The distance from the centre of the stick to the path of the travelling mass is h (see figure). Now the travelling mass m collides elastically with the stick, and the centre of the stick and mass m are observed to move with equal speed v after the collision. Assuming that the travelling mass m can be treated as a point mass, and the moment of inertia of the stick about its center is $I = \frac{mL^2}{12}$, it follows that the distance h must be

(a) $\frac{L}{2}$

(c) $\frac{L}{\sqrt{6}}$

(d) $\frac{L}{\sqrt{3}}$

(f) zero

The binding energy per nucleon for ^{235}U is 7.6 MeV. The ^{235}U nucleus undergoes fission to Q8. produce two fragments, both having binding energy per nucleon 8.5 MeV. The energy released, in Joules, from the complete fission of 1 Kg of ²³⁵U is, therefore,

(a) 8000

(b) 10^{35}

(c) 450

(d) 20000

(e) 8.7 x 10¹³

(f) 5.0×10^8

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com