CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

JNU Ph.D 2017

PART-A

- A1. Consider the Lagrangian, $L = \frac{1}{2}x^2 \frac{1}{2}\omega^2 x^2 + \alpha \log x$, where α and ω are constants. Let x > 0
 - (a) Find the equilibrium value of x.
 - (b) Write down the Lagrangian for small oscillations about the equilibrium
 - (c) Work out the frequency of normal mode
- A2. Show that $u(x, y) = \sin x \cosh y + 2 \cos x \sinh y$ satisfies Laplace's equation in dimensions. If u is taken to be the real part of a complex analytic function f(z) = u + iv that vanishes at z = 0 then find f(z)
- A3. the wave function of a particle of mass m, moving in aone-dimensional box lying between x = 0and x = L, is given at an instant by $\psi(x) = Cx(L-x)$, where C is normalization constant. If you measure the energy of the particle at this instant the probability that the particle will be found in its ground state?
- A4. The equation of state for an ideal gas is given by $p = mk_BT$, where $n = \frac{N}{V}$ is the number of particle per unit volume

(a) Find the entropy, S, of the ideal gas ass a function of p and V (up in the undetermined constant)

- (b) Show that the pressure of a gas is given by $p = n \frac{\partial f}{\partial n} = -f$, where $f = \frac{P}{V}$ is the free energy per unit volume. Does it require the gas to be ideal?
- A5. Aluminium has three valence electrons per atom, an atomic weight of 0.02698 kg/mol a density of 2700 kg/m^3 and a conductivity of $3.54 \times 10^7 S/m$. Assume that all three valence electrons of every atom participate in electrical conduction
 - (a) Calculate the carrier concentration, n.
 - (b) Calculate the mobility, μ in aluminium.
- A6. For scalar potential, $\phi = 0$, and vector potential $A = A_0 \sin(kx \omega t)\hat{y}$, find the corresponding electric field,, *E*, and magnetic field, *B*. Here A_0 , ω and *k* are constants.
 - (b) Under what condition, will all the four Maxwell's equations be satisfied for these E and B?

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

PART - B

- B1. Using dimensional analysis, show that $\frac{e^2}{\hbar}$ is the quantum unit of electrical conductance
- B2. Calculate the density of states, $D(\varepsilon)$, for the free particle dispersion, $\varepsilon_k = \frac{\hbar^2 k^2}{2m}$ is two dimensions. Sketch $D(\varepsilon)$ vs ε
- B3. What is the difference between coherence length, ξ and penetration depth, λ of a superconductor? Which of the two is bigger in a type -1 superconductor?
- B4. In its rest frame, a muon (mass = $106 \ MeV$) has a lifetime of 2.2×10^{-6} sec. what is the lifetime in the laboratory frame if the muon has a kinetic energy of $500 \ MeV$?
- B5. A collection of free spin $\frac{1}{2}$ particles at temperature, *T*, is placed in a magnetic field of $2Wb/m^2$. If the number of spins parallel to the magnetic field is twice as large as the number of antiparallel spins, then what is the temperature, *T*?
- B6. Find the general solution of the ordinary differential equation, $\frac{d^2x}{dt^2} + x = t^2$. Find the solution with the initial condition x(0) = 0 and $\frac{dx}{dt}(0) = 0$
- B7. For a diatomic molecule of identical atoms with atomic mass $40 \times 10^{27} kg$, and bond length of $2 \times 10^{-10} m$, calculate (using rigid rotator model) the frequency of rotational transition from the angular momentum state J = 1 and J = 2.
- B8. In the circuit given below, what is the peak output voltage?

B9. The Doppler width of the orange line of krypton at $\lambda = 6058 \stackrel{0}{A}$ is $\Delta \lambda = 0.0055 \stackrel{0}{A}$. What is the bandwidth, Δv of this line?

B10. A spin $\frac{1}{2}$ particle is given to be in the normalized eigenstate, $|\uparrow\rangle$, of the operator \hat{S}_z such

that $\hat{S}_{z}|\uparrow\rangle = \frac{\hbar}{2}|\uparrow\rangle$. Calculate the uncertainty, $\langle \hat{S}_{x}^{2} \rangle - \langle \hat{S}_{x} \rangle^{2}$, oof the measurement of \hat{S}_{x} in this state.