CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

JNU PhD PAPER 2020

Pravegam Education

A sphere of radius R carries a polarization $\vec{P}(r) = k\vec{r}$ where k is a constant and \vec{r} is the vector from the center of the sphere. Answer the following three questions for this problem.

Q1. The surface bound charge σ_b is:

(a)
$$
\frac{kr}{4mR^2}
$$
 (b) $\frac{1}{4\pi\varepsilon_0} \frac{kr}{4\pi R^2}$

(c)
$$
kR\hat{r}
$$
 (d) $kR\hat{r}$

Ans. (d)

Q2. The volume bound charge (p_b) is:

(a)
$$
\frac{1}{4\pi\varepsilon_0} \frac{3k}{4\pi R^3}
$$
 (b) $-3kr$
(c) $-3k$ (d) $9k^3r^3\hat{r}$

Ans. (c)

Q3. The electric field outside the sphere is:

(a)
$$
4\pi kR^2
$$

 (b) $\frac{4}{3}\pi kR^3 + 4\pi kR^2$

(c) 0 (d)
$$
\frac{1}{3 \epsilon_0} \vec{r}
$$

Ans. (c)

Q4. Consider the differential equation $\frac{2y}{x^2} + \omega^2 y = 0$ $\frac{d^2y}{dx^2} + \omega^2y$ dx^2 $+\omega^2 y = 0$. The solution of this equation can be expressed (a) $\frac{1}{4\pi\varepsilon_0} \frac{3k}{4\pi R^3}$ (b) $-3kr$

(c) $-3k$ (d) $9k^3r^3\hat{r}$

(c) $-3k$ (d) $9k^3r^3\hat{r}$

(d) $9k^3r^3\hat{r}$

(d) $9k^3r^3\hat{r}$

(d) $\frac{4}{3}\pi kR^3 + 4\pi kR^2$

(e) 0 (d) $\frac{1}{3}\pi kR^3 + 4\pi kR^2$

(e) 0 (d) $\$ $y(x) = \sum_{n=0}^{\infty} c_n x^n$. Which of the following is the correct recursion relation for the coefficients of this series? (c) 5π

(c) $3\pi k$

(c) The electric field outside the sphere is:

(a) $4\pi kR^2$

(b) $\frac{4}{3}\pi kR^3 + 4\pi kR^2$

(c) 0

(d) $\frac{1}{3\epsilon_0}r^2$

(c) Consider the differential equation $\frac{d^2y}{dx^2} + \omega^2 y = 0$. The solution o e sphere is:

(b) $\frac{4}{3}\pi kR^3 + 4\pi kR^2$

(d) $\frac{1}{3\epsilon_0}\vec{r}$

(a) $\frac{1}{\epsilon_0 k^2} + \omega^2 y = 0$. The solution of this equation can be expressed
 $\sum_{n=0}^{\infty} c_n x^n$. Which of the following is the correct recursion relation The electric field outside the sphere is:

(a) $4\pi kR^2$

(b) $\frac{4}{3}\pi kR^3 + 4\pi kR^2$

(c) 0

(d) $\frac{1}{3}e_0\bar{r}$

(c)

Consider the differential equation $\frac{d^2y}{dx^2} + \omega^2 y = 0$. The solution of this equation can be th side the sphere is:

(b) $\frac{4}{3} \pi k R^3 + 4 \pi k R^2$

(d) $\frac{1}{3} \epsilon_0^2$

(d) $\frac{1}{3} \epsilon_0^2$

(d) $\frac{1}{6} \epsilon_0^2$

(d) $\frac{1}{6} \epsilon_0^2$

(d) ϵ_0^2 and ϵ_0^2 and $y(x) = \sum_{n=0}^{\infty} c_n x^n$. Which of the following is the co

(a)
$$
c_{n+2} = -\frac{\omega^2}{(n+2)(n+1)} c_n
$$

\n(b) $c_n = -\frac{\omega^2}{n(n+1)} c_{n+1}$
\n(c) $c_n = \frac{\omega^2}{n(n-1)} c_{n-1}$
\n(d) $c_{n+2} = \frac{\omega^2}{(n+2)(n+1)} c_n$

Ans. (a)

Q5. For an atom with an electronic configuration np^2 (where n is the principal quantum number of a shell), the possible values of total angular momentum L and total spin S in the ground state are:

- (a) $L = 2$ and $S = 0$ (b) $L = 2$ and $S = 1$
- (c) $L = 1$ and $S = 1$ (d) $L = 1$ and $S = 0$

PraVegaEl Education CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

- Ans. (c)
- Q6. Which one of the following two-particle state $\psi(\vec{r}_1, \vec{r}_2)$ correctly describes two identical bosons in the plane wave states given by the wave-vectors k_1 \overrightarrow{r} and k_2 \overrightarrow{r} ?

PROBLEM SET 15.2 CAUCAU EXECUTE: EXECUTE: EXECUTE: EXECUTE: EXECUTE: EXECUTE: EXECUTE: EXECUTE:
$$
\mathbf{r} = \mathbf{r} \cdot \mathbf{r}
$$
 (i.e., $\mathbf{r} \cdot \mathbf{r}$) is the plane wave states given by the wave-vectors \vec{k}_1 and \vec{k}_2 ? **(a)** $\psi(\vec{r}_1, \vec{r}_2) = e^{i(\vec{k}_1, \vec{r}_1 + \vec{k}_2, \vec{r}_2)}$ **(b)** $\psi(\vec{r}_1, \vec{r}_2) = e^{i(\vec{k}_1, \vec{r}_1 + \vec{k}_2, \vec{r}_2)}$ **(c)** $\psi(\vec{r}_1, \vec{r}_2) = e^{i(\vec{k}_1, \vec{r}_1 + \vec{k}_2, \vec{r}_2)} = e^{i(\vec{k}_1, \vec{r}_1 + \vec{k}_2, \vec{r}_2)} + e^{i(\vec{k}_1, \vec{r}_2 + \vec{k}_2, \vec{r}_1)}$ **(d)** $\psi(\vec{r}_1, \vec{r}_2) = e^{i(\vec{k}_1, \vec{r}_1 + \vec{k}_2, \vec{r}_2)} - e^{i(\vec{k}_1, \vec{r}_2 + \vec{k}_2, \vec{r}_1)}$ **(e) Electrons are ejected from calcium surface when monochromatic light of wavelength**

Ans. (c)

Q7. Electrons are ejected from calcium surface when monochromatic light of wavelength 488 nm falls on it. The work function of calcium is $2.28eV$. What is the maximum kinetic energy of the emitted electron?

(Planck's constant, $h = 4.14 \times 10^{-15} eV$ sec; speed of light, $c = 3 \times 10^8 m/sec$) (a) $0.026eV$ (b) $26eV$ (c) $2.6eV$ (d) $0.26eV$

Ans. (d)

Q8. Which one of the following is not true about the superconductors?

- (a) Type II superconductors relize a mixed state between the critical magnetic field H_{c1} and H_{c2} .
- (b) Type II superconductors, the penetration depth (λ) is smaller than the coherence length (ζ)
- (c) According to BCS theory, the copper pairs are formed due to electron-photn interaction
- (d) Superconductivity is characterized by strongly paramagnetic behavior
- Ans. (d)
- Q9. Consider a vector $\vec{v} = x_1 \vec{a}_1 + x_2 \vec{a}_2 + x_3 \vec{a}_3$ in a real three dimensional vector space spanned by three basis vectors \vec{a}_1, \vec{a}_2 and \vec{a}_3 . Consider a new basis of three vectors: $\vec{b}_1 = \vec{a}_1, \vec{b}_2 = \vec{a}_1 + \vec{a}_2$, and $\vec{b}_2 = \vec{a}_1 + \vec{a}_2 + \vec{a}_3$. Let the vector \vec{v} given above be denoted in this new basis as: $\vec{v} = y_1 \vec{b}_1 + y_2 \vec{b}_2 + y_3 \vec{b}_3$. If the transformation matrix V between the components of the vector \vec{v} in the two bases is defined as: $x_i = \sum_{j=1}^{3} V_{ij} y_j$ for $i = 1, 2, 3$, then

(a)
$$
V = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}
$$
 (b) $V = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ (c) $V = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$ (d) $V = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$

Ans. (b)

Pravegam Education CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

Q10. Which of the following expressions is correct for the Helmholtz free energy $F(T, V, N)$ of a thermodynamic system in canonical ensemble? Here, P is pressure, V is volume, N is the number of particles, μ is chemical potential, and T is temperature.

(a)
$$
F = PV + \mu N
$$

 (b) $F = PV + \mu N$

(c)
$$
F = -PV - \mu N
$$
 (d) $F = \mu N$

- Ans. (a)
- Q11. Let the angular momentum eigenstates with quantum number j be denoted as $|j,m\rangle$, where $m = -j, -j + 1, \ldots, j - j$. For a system of two angular momenta j_1 and j_2 , any state can be described as linear superposition of their product states $j_1, m_1 \rangle |j_2, m_2 \rangle$. For $j_1 = 1$ and $j_2 = \frac{1}{2}$ 2 $j_2 = \frac{1}{2}$, which of the following is the correct expression for the ttao angular momentum eigenstate with quantum number $j_{total} = \frac{3}{5}$ $j_{\text{total}} = \frac{3}{2}$ and $m_{\text{total}} = \frac{1}{2}$? (a) $j_{total} = \frac{3}{2}, m_{total} = \frac{1}{2} = \frac{1}{\sqrt{2}}(|1,1\rangle|1/2-1/2\rangle+\sqrt{2}|1,0\rangle|1/2,1/2\rangle)$ $j_{total} = \frac{3}{2}, m_{total} = \frac{1}{2} = \frac{1}{\sqrt{3}}(|1,1\rangle|1/2 - 1/2\rangle + \sqrt{3}$ (a) $F = PV + \mu N$

(b) $F = PV + \mu N$

(c) $F = -PV - \mu N$

(d) $F = \mu N$

(a)

Let the angular momentum eigenstates with quantum number j be denoted as $|j, m\rangle$, where
 $m = -j, -j + 1, ..., j-, j$. For a system of two angular momenta j , and $j_{total} = \frac{3}{2}, m_{total} = \frac{1}{2}$ $\bigg\rangle = \frac{1}{\sqrt{2}} (|1,1\rangle |1/2 - 1/2\rangle + |1,1\rangle)$ (c) $\left|j_{\text{total}} = \frac{3}{2}, m_{\text{total}} = \frac{1}{2}\right\rangle = |1, 0\rangle |1/2, 1/2\rangle$ (d) $j_{total} = \frac{3}{2}, m_{total} = \frac{1}{2}$ = $|1,1\rangle |1/2 - 1/2\rangle$

Ans. (a)

Q12. Consider a gas of N free electrons confined in a volume V. (m is the electron mass, \hbar is Planck's constant and k_B is Boltzmann's constant)

Answer the following three questions on the free electron gas problem. What is the density of states for the free electrons?

(a)
$$
\frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{1/2} E^{3/2}
$$
 (b) $\frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right) E^{3/2}$
(c) $\frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} E^{1/2}$ (d) $\frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right) E^{1/2}$

Ans. (c)

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

PraVegama Education

Q13. What is the Fermi energy in terms of N and V ?

(a)
$$
\left(\frac{3\pi^2 N}{V}\right)^{1/2}
$$
 (b) $\frac{\hbar^2}{2m} \left(\frac{3\pi^2 N}{V}\right)^{\frac{1}{3}}$ (c) $\frac{\hbar^2}{2m} \left(\frac{3\pi^2 N}{V}\right)^{\frac{2}{3}}$ (d) $\left(\frac{3\pi^2 N}{V}\right)^{\frac{3}{2}}$

Ans. (c)

- Q14. How does the specific heat (C_V) of free electron gas vary with temperature (T) at low temperature?
	- (a) $C_V \propto T^3$
	- (b) $C_V \propto e^{\frac{-\Delta}{k_B T}}$, $\propto e^{k_B T}$, where Δ is the energy gap
	- (c) $C_v \propto T^2$
	- (d) $C_V \propto T$

Ans. (d)

Consider the function $f(z) = e^{1/z}$ of a complex variable $z = x + iy$ in a complex plane. Answer the following three questions on this function

- Q15. The function $f(z) = e^{1/z}$ has: (a) no singularity at $z = 0$ (b)an essential singularity at $z = 0$ (c) a simple pole at $z = 0$ (d) a branch point at $z = 0$ Ans. (b)
- Q16. Evaluate the integral $\oint dz e^{1/z}$ over the closed contour given by the unit circle $|z|=1$ centered around the origin of the complex plane.

(a)
$$
\pi
$$
 (b) $i\pi$ (c) $i2\pi$ (d) 2π

Ans. (c)

Q17. The equation of the contour corresponding to a fixed value, A is:

the following three questions on this function
\nThe function
$$
f(z) = e^{1/z}
$$
 has:
\n(a) no singularity at $z = 0$
\n(b) an essential singularity at $z = 0$
\n(c) a simple pole at $z = 0$
\n(d) a branch point at $z = 0$
\n(e) Evaluate the integral $\oint dz e^{1/z}$ over the closed contour given by the unit circle $|z| = 1$ centered
\naround the origin of the complex plane.
\n(a) π
\n(b) $i\pi$
\n(c) $i2\pi$
\n(d) 2π
\n(e) The equation of the contour corresponding to a fixed value, A is:
\n(a) $\left(x - \frac{1}{2 \ln A}\right)^2 + y^2 = \frac{1}{4(\ln A)^2}$
\n(b) $\left(x + \frac{1}{2 \ln A}\right)^2 + y^2 = \frac{1}{4(\ln A)^2}$
\n(c) $\left(x - \frac{1}{\ln A}\right)^2 + y^2 = \frac{1}{(\ln A)^2}$
\n(d) $\left(x + \frac{1}{\ln A}\right)^2 + y^2 = \frac{1}{(\ln A)^2}$
\n(e) $\left(x - \frac{1}{\ln A}\right)^2 + y^2 = \frac{1}{(\ln A)^2}$
\n(f) $\left(x + \frac{1}{\ln A}\right)^2 + y^2 = \frac{1}{(\ln A)^2}$
\n(g)

Ans. (a)

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics Q18. For a classical system described by a pair of canonical q and momentum p , consider the transformation $Q = -\sqrt{2p} \cos q$ and $P = \sqrt{2p} \sin q$. The poissson bracket of the new variables Q and P is equal to: (a) $-\cos 2q$ (b) $\cos 2q$ (c) 1 (d) 0

PraVegam Education

Ans. (c)

Answer the following three questions on the relativistic corrections to the hydrogen problem.

Q19. The leading relativistic correction to the kinetic energy term in the hydrogen atom Hamiltonian is:

(a)
$$
\frac{p^4}{8m^3c^2}
$$
 (b) $-\frac{p^3}{8m^3c^2}$ (c) $-\frac{p^4}{8m^3c^2}$ (d) $\frac{p^5}{8m^3c^2}$

Ans. (c)

- Q20. The relativistic correction to the hydrogen atom problem leading to spin-orbit interaction is given by:
	- (a) $\xi(r)\vec{L}.\vec{S}$, where $\xi(r) \propto r$ (b) $\xi(r)\vec{L}.\vec{S}$, where $\xi(r) \propto r^{-3}$, where $\xi(r) \propto r^{-3}$ (c) $\xi(r)\vec{L}.\vec{S}$, where $\xi(r) \propto r^{-2}$, where $\xi(r) \propto r^{-2}$ (d) $\xi(r)\vec{L}.\vec{S}$, where $\xi(r) \propto r^{-1}$, where $\xi(r) \propto r^{-1}$

Ans. (b)

2 0 1 8 $\left(\frac{e}{r}\right)^2 \delta(\vec{r})$ $\frac{m}{mc}$ δ $\frac{1}{\varepsilon _0}\!\!\left(\frac{\hbar e}{mc}\right)^{\!2}\delta\!\left(\vec{r}\right)$

Q19. The leading relativistic correction to the kinetic energy term in the hydrogen atom Hamiltonian is:

(a) $\frac{p^4}{8m^2c^2}$ (b) $-\frac{p^2}{8m^2c^2}$ (c) $-\frac{p^5}{8m^2c^2}$ (d) $\frac{p^5}{8m^2c^2}$

Ans. (c)

220. The relativ where $\delta(\vec{r})$ is Dirac delta function. Which of the following atomic states will be affected by the Darwin correction term?

- (a) only $l = 0$ states
- (b) only $l = 1$ states
- (c) only $l = 2$ states
- (d) All l states

Ans. (a)

For a single ended differential amplifier as given in the figure, answer the following three questions.

<u>Caaca Education</u> CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics Q22. The tail current is: (a) 5 mA (b) 10 mA (c) 6 mA (d) 8 mA Ans. (c) Q23. The value of emitter current is: (a) 1 mA (b) 2 mA (c) 3 mA (d) 4 mA Ans. (c) Q24. The value of the collector voltage: (a) $4V$ (b) $6V$ (c) $8V$ (d) $10V$ Ans. (b) Q25. Which one of the following elements cannot be used as dopants in silicon to make it n -type semiconductor? (a) Arsenic (b) Phosphorus (c) Boron (d) Antimony Ans. (c) Q22. The tail current is:

(a) 5 mA (b) 10 mA (c) 6 mA (d) 8 mA

Ans. (c)

Q23. The value of emitter current is:

(a) 1 mA (b) 2 mA (c) 3 mA (d) 4 mA

Ans. (e)

Q24. The value of the collector voltage:
 $($ is an eigenfunction of the angular momentum operator L_x with eigenvalues. (a) $-2\hbar$ (b) $-\hbar$ (c) $+\hbar$ (d) $+2\hbar$ Ans. (d) (a) 1 mA (b) $2mA$ (c) $3mA$ (d) $4mA$

Ans. (c)

Q25. The value of the collector voltage:

(a) $4V$ (b) $6V$ (c) $8V$ (d) $10V$

Ans. (b)

Q25. Which one of the following elements cannot be used as dopants in silicon t The value of the collector voltage:

(b) $4V$ (b) $6V$ (c) $8V$ (d) $10V$

(c)

(b)

Which one of the following elements cannot be used as dopants in silicon to make it *n*-type

semiconductor?

(a) Arsenic

(c) Phosphoru in the value of light, $c = 3 \times 10^8$ m/s culler that the light of the magnitum operator L_x with eigenvalues.

The wavefunction $\psi(x, y, z) = (y + iz)^2$. The wave (d) 10*V*
ants in silicon to make it *n*-type
(d) Antimony
 $x,z = (y + iz)^2$. The wavefunction
eigenvalues.
(d) +2*h*
ms of momentum $p \ge 120MeV/c$,
 $c = 3 \times 10^8 m/s$; electro charge,
stants of a crystal of gold (b) $\frac{1}{2}$

(b) $\frac{1}{2}$

(b) $\frac{1}{2}$

Which one of the following elements cannot be used as dopants in silicon to make

semiconductor?

(a) Arsenic (b) Phosphorus (c) Boron (d) Antimony

(c)

Consider a particle in (a) 10*V*

(b) 6*V* (c) 8*V*

(d) 10*V*

(d) 10*V*

(d) 20*V*

(d) 20*V*

(d) Antimon

(d) (a) The size of a biomolecule (b) The lattice constants of a crystal of gold (c) The size of an atomic nucleus (d) None of the above Ans. (c) $2k\Omega$ $2k\Omega$ $-12V$ $O + 12V$

A "two-level" atom is considered to have only two energy levels with energies 0 and \in . For a system of N non-interacting two-level atoms with total energy E , answer the following three questions.

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

PraVegam Education

Q28. What is the number of microstates $\Omega(N, E)$?

(a)
$$
\frac{N!}{\left(N + \frac{E}{\epsilon}\right)! \left(\frac{E}{\epsilon}\right)!}
$$

\n(b) $\frac{N!}{\left(N - \frac{E}{\epsilon}\right)! \left(\frac{E}{\epsilon}\right)!}$
\n(c) $\frac{N!}{\left(N - \frac{E}{\epsilon}\right)! \left(N + \frac{E}{\epsilon}\right)!}$
\n(d) $\frac{N!}{\left(N - \frac{\epsilon}{E}\right)! \left(\frac{\epsilon}{E}\right)!}$

Ans. (b)

Q29. What is the entropy per particle in the limit of large N ?

(a)
$$
-k_B \left[\left(1 - \frac{E}{N_e} \right) \ln \left(1 - \frac{E}{N_e} \right) - \left(\frac{E}{N_e} \right) \ln \left(\frac{E}{N_e} \right) \right]
$$

\n(b) $+k_B \left[\left(1 - \frac{E}{N_e} \right) \ln \left(1 - \frac{E}{N_e} \right) + \left(\frac{E}{N_e} \right) \ln \left(\frac{E}{N_e} \right) \right]$
\n(c) $-k_B \left[\left(1 - \frac{E}{N_e} \right) \ln \left(1 - \frac{E}{N_e} \right) + \left(\frac{E}{N_e} \right) \ln \left(\frac{E}{N_e} \right) \right]$
\n(d) $+k_B \left[\left(1 + \frac{E}{N_e} \right) \ln \left(1 + \frac{E}{N_e} \right) - \left(\frac{E}{N_e} \right) \ln \left(\frac{E}{N_e} \right) \right]$

Ans. (c)

Q30. What is the corresponding temperature T ?

(a)
$$
\frac{1}{T} = \frac{k_B}{\epsilon} \ln \left(\frac{N_{\epsilon}}{E} - 1 \right)
$$

\n(b) $\frac{1}{T} = \frac{k_B}{\epsilon} \ln \left(\frac{N_{\epsilon}}{E} + 1 \right)$
\n(c) $\frac{1}{T} = \frac{k_B}{\epsilon} \ln \left(\frac{E}{N_{\epsilon}} + 1 \right)$
\n(d) $\frac{1}{T} = \frac{k_B}{\epsilon} \ln \left(\frac{E}{N_{\epsilon}} - 1 \right)$

Ans. (a)

Q31. The decay $n \to p + e^-$ of a neutron (n) into a proton (p) and an electron (e^-) is forbidden due to the violation of conservation of:

- (a) Angular momentum and baryon number
- (b) Energy and lepton number
- (c) Angular momentum and lepton number
- (d) Electric charge and baryon number

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

H.N. 28 B/7, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016 #: +91-89207-59559

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com 8 Ans. (b)

Q38. If the scalar and vector potentials are given by $\phi(\vec{r}, t) = 0$ and $\vec{A}(\vec{r}, t) = -\frac{1}{\sqrt{2}}$ **1 GRE for Physics**
and $\vec{A}(\vec{r},t) = -\frac{1}{4\pi \epsilon_0} \frac{qt}{r^2} \hat{r}$, the 0 $(t) = -\frac{1}{t} \frac{qt}{2} \hat{r}$ 4 $\vec{A}(\vec{r},t) = -\frac{1}{4\pi} \frac{qt}{2}\hat{r},$ $\pi \in_{0} r$ $=-\frac{1}{4}$ ϵ ₀ $\vec{A}(\vec{r}, t) = -\frac{1}{\sqrt{2\pi i}} \frac{qt}{r^2} \hat{r}$, the

Pravegam Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

corresponding electric field (\vec{E}) is:

(a) 0 (b)
$$
\frac{1}{4\pi \epsilon_0} \frac{q}{r^2} \hat{r}
$$
 (c) $\frac{1}{4\pi \epsilon_0} \frac{q}{r} \hat{r}$ (d) $-\frac{1}{4\pi \epsilon_0} \frac{q}{r^2} \hat{r}$

Ans. (b)

A body of mass m is thrown up vertically with an initial speed u . The air exerts a drag force $-kv$ upon it, where v is the instantaneous velocity of the body and k is a constant. The body also experiences gravitational acceleration g .

Answer the following questions on this problem.

Q39. What is the terminal speed attained by the body?

(a)
$$
\frac{mg}{k}
$$
 (b) $\frac{g}{k}$ (c) $\frac{k}{mg}$ (d) u

Ans. (a)

Q40. What is the time it will to attain the maximum height?

(a)
$$
\ln\left(1 + \frac{mg}{ku}\right)
$$

\n(b) $\frac{k}{m}\ln\left(1 + \frac{ku}{mg}\right)$
\n(c) $\frac{m}{k}\ln\left(1 + \frac{ku}{mg}\right)$
\n(d) $\frac{m}{k}\ln\left(1 + \frac{mg}{ku}\right)$

Ans. (c)

Q41. What is the maximum height attained by the body?

(a)
$$
\ln\left(1 + \frac{mg}{ku}\right)
$$

\n(b) $\frac{k}{m}\ln\left(1 + \frac{ku}{mg}\right)$
\n(c) $\frac{m}{k}\ln\left(1 + \frac{ku}{mg}\right)$
\n(d) $\frac{m}{k}\ln\left(1 + \frac{mg}{ku}\right)$
\n(e) What is the maximum height attained by the body?
\n(a) $\frac{mu}{k} + g\left(\frac{m}{k}\right)^2 \ln\left(1 + \frac{ku}{mg}\right)$
\n(b) $\frac{mu}{k} - g\left(\frac{m}{k}\right)^2 \ln\left(1 - \frac{ku}{mg}\right)$
\n(c) $\frac{mu}{k} - g\left(\frac{m}{k}\right)^2 \ln\left(1 - \frac{ku}{mg}\right)$
\n(d) $\frac{mu}{k} + g\left(\frac{m}{k}\right)^2 \ln\left(1 - \frac{ku}{mg}\right)$
\n(b) The Fourier transformation for a function $f(x)$ of a real variable x can be defined as:
\n $f(x) = \int_{-\infty}^{+\infty} dk e^{ikx} g(k)$, where $g(k)$ is a function of another real variable k. If $g(k) = e^{iky}$ for y , then what is $f(x)$?
\n(a) $\delta(x + y)$
\n(b) $\delta(x - y)$
\n(c) $2\pi\delta(x + y)$
\n(d) $2\pi\delta(x - y)$

Ans. (b)

Q42. The Fourier transformation for a function $f(x)$ of a real variable x can be defined as:

 $+\infty$ $=\int_{-\infty}^{+\infty} dk e^{ikx} g(k)$, where $g(k)$ is a function of another real variable k. If $g(k) = e^{iky}$ for a given y, then what is $f(x)$?

(a) $\delta(x+y)$ (b) $\delta(x-y)$ (c) $2\pi\delta(x+y)$ (d) $2\pi\delta(x-y)$

Pravegam Education CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

Ans. (c)

- Q43. In spectroscopy, the selection rule for transition between the rotational energy levels of a diatomic molecule (given by the rotational quantum number J) states that the transition between two rotational levels is allowed if:
	- (a) $\Delta J = \pm 1$ (b) $\Delta J = \pm 2$
	- (c) $\Delta J = 0$ (d) None of the above

Ans. (a)

Q44. For a classical system described by the Hamiltonian $H(q, p)$ in terms of the generalized coordinates q and p, the Hamilton's equation of motion (in the standard notation) are:

(a)
$$
\dot{q} = \frac{\partial H}{\partial p}
$$
 $\dot{p} = \frac{\partial H}{\partial q}$
\n(b) $\dot{q} = -\frac{\partial H}{\partial p}$ $\dot{p} = -\frac{\partial H}{\partial q}$
\n(c) $\dot{q} = \frac{\partial H}{\partial p}$ $\dot{p} = -\frac{\partial H}{\partial q}$
\n(d) $\dot{q} = -\frac{\partial H}{\partial p}$ $\dot{p} = \frac{\partial H}{\partial q}$

Ans. (c)

Q45. For a thermodynamic system of N particles at temperature T, which of the following relation is correct for the change in entropy S with respect to volume V ?

(a)
$$
\left(\frac{\partial S}{\partial V}\right)_{T,N} = -\left(\frac{\partial P}{\partial T}\right)_{V,N}
$$

\n(b) $\left(\frac{\partial S}{\partial V}\right)_{T,N} = \left(\frac{\partial P}{\partial T}\right)_{V,N}$
\n(c) $\left(\frac{\partial S}{\partial V}\right)_{T,N} = \left(\frac{\partial T}{\partial P}\right)_{S,N}$
\n(d) $\left(\frac{\partial S}{\partial V}\right)_{T,N} = -\left(\frac{\partial T}{\partial P}\right)_{S,N}$

Ans. (b)

Q46. A spin $\frac{1}{2}$ $\frac{1}{2}$ particle in a magnetic field B pointing along $yH = \mu_b B \sigma_y$, where σ_y is the Pauli matrix corresponding to the y component of the spin $\frac{1}{2}$ $\frac{1}{2}$ operator (and μ_B is the bohr magneton). For this

system, the time evolution operator $e^{-iHt/\hbar}$ can be written as:

(a)
$$
\begin{bmatrix}\n\cos\left(\frac{\mu_B B t}{\hbar}\right) & -\sin\left(\frac{\mu_B B t}{\hbar}\right) \\
-\sin\left(\frac{\mu_B B t}{\hbar}\right) & \cos\left(\frac{\mu_B B t}{\hbar}\right)\n\end{bmatrix}
$$
\n(b)
$$
\begin{bmatrix}\n\cos\left(\frac{\mu_B B t}{\hbar}\right) & -i \sin\left(\frac{\mu_B B t}{\hbar}\right) \\
-i \sin\left(\frac{\mu_B B t}{\hbar}\right) & \cos\left(\frac{\mu_B B t}{\hbar}\right)\n\end{bmatrix}
$$
\n(c)
$$
\begin{bmatrix}\n\cos\left(\frac{\mu_B B t}{\hbar}\right) & \sin\left(\frac{\mu_B B t}{\hbar}\right) \\
\sin\left(\frac{\mu_B B t}{\hbar}\right) & \cos\left(\frac{\mu_B B t}{\hbar}\right)\n\end{bmatrix}
$$
\n(d)
$$
\begin{bmatrix}\n\cos\left(\frac{\mu_B B t}{\hbar}\right) & -\sin\left(\frac{\mu_B B t}{\hbar}\right) \\
\sin\left(\frac{\mu_B B t}{\hbar}\right) & \cos\left(\frac{\mu_B B t}{\hbar}\right)\n\end{bmatrix}
$$

H.N. 28 B/7, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016 #: +91-89207-59559 Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

PraVegaEl Education

Ans. (d)

Consider the one-dimensional simple harmonic oscillator of mass m and frequency ω described by the Hamilton, $H = \frac{1}{2} p^2 + \frac{1}{2} m \omega^2 x^2 = \hbar \omega \left(a^{\dagger} a + \frac{1}{2} \right)$ $\frac{2m}{2}$ $\frac{p+2m\omega x}{2}$ $\frac{m\omega}{2}$ $\frac{a+2}{2}$ $H = \frac{1}{2} p^2 + \frac{1}{2} m \omega^2 x^2 = \hbar \omega \left(a^{\dagger} a + \frac{1}{2} m \right)$ m $=\frac{1}{2m}p^2 + \frac{1}{2}m\omega^2 x^2 = \hbar \omega \left(a^{\dagger}a + \frac{1}{2}\right)$, with eigenvalues $E_n = \hbar \omega \left(n + \frac{1}{2}\right)$ and **Provided Education**
CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
(d)
Consider the one-dimensional simple harmonic oscillator of mass m and frequency ω described
by the Hamilton, $H = \frac{1}{2m}p^2 + \frac{1}{2}m\$ **Education**

JEST, TIFR and GRE for Physics

oscillator of mass *m* and frequency ω described
 $a^{\dagger}a + \frac{1}{2}$, with eigenvalues $E_n = \hbar \omega \left(n + \frac{1}{2}\right)$ and

berators a^{\dagger} and *a* are related to the coordinate *x* Consider the one-dimensional simple harmonic oscillator of mass m and frequency ω do
by the Hamilton, $H = \frac{1}{2m}p^2 + \frac{1}{2}m\omega^2x^2 = \hbar\omega\left(a^{\dagger}a + \frac{1}{2}\right)$, with eigenvalues $E_n = \hbar\omega\left(n + \frac{1}{2}\right)$
eigenstates $|n\rangle$

eigenstates $|n\rangle$. The creation and annihilation operators a^+ and a are related to the coordinate x

 $\overline{2}$ $x = \sqrt{\frac{h}{2} (a^{\dagger} + a)}$ $m\omega$ $=\sqrt{\frac{\hbar}{2}(a^{\dagger}+a)}$ 2 $p = i \sqrt{\frac{m \hbar \omega}{2} (a^{\dagger} - a)}$. Answer the following three questions on this problem.

Q47. The commulator $(a^{\dagger}a, a^{\dagger}a^{\dagger})$ is equal to:

(a)
$$
-2a^{\dagger}a^{\dagger}
$$
 (b) $2a^{\dagger}a$ (c) $2a^{\dagger}a^{\dagger}$ (d) $-2a^{\dagger}a$

Ans. (c)

Q48. What is the uncertainty in position, $\sqrt{\langle x^2 \rangle - \langle x \rangle^2}$, in the eigenstate $|n\rangle$?

(a)
$$
\sqrt{\frac{\hbar}{m\omega}(2n+1)}
$$
 (b) $\sqrt{\frac{\hbar}{m\omega}(n+\frac{1}{2})}$
(c) 0 (d) $\sqrt{\frac{\hbar}{2}}$

Ans. (b)

Q49. Which of the following is the correct expression for the creation operator?

(a)
$$
\sqrt{n+1}|n\rangle\langle n+1|
$$

\n(b) $\sum_{n=0}^{\infty} \sqrt{n+1}|n+1\rangle\langle n|$
\n(c) $\sum_{n=0}^{\infty} \sqrt{n}|n\rangle\langle n+1|$
\n(d) $\sqrt{n}|n\rangle\langle n-1|$

Ans. : (b)

Q50. Consider a rectangular waveguide with a cross-section a dimension $2 cm \times 1 cm$. If the driving frequency is 1.7×10^{10} Hz, the transverse Electric (TE) mode that will propagate in this wave guide is:

(a)
$$
0.53 \times 10^{10} \text{ Hz}
$$

\n(b) $0.75 \times 10^{10} \text{ Hz}$
\n(c) $1.9 \times 10^{10} \text{ Hz}$
\n(d) $1.4 \times 10^{9} \text{ Hz}$

Ans. (b)