CSIR NET JUNE 2023

Part-A

Q1. Which of the numbers $A=162^{3}+327^{3}$ and $B=612^{3}-123^{3}$ is divisible by 489?
(a) Both A and B
(b) A but not B
(c) B but not A
(d) Neither A nor B

Ans.: (a)
Q2. In a buffet, 4 curries A, B, C and D were served. A guest was to eat any one or more than one curry, but not the combinations having C and D together. The number of options available for the guest were
(a) 3
(b) 7
(c) 11
(d) 15

Ans.: (c)
Q3. Twenty litres of rainwater having a $2.0 \mu \mathrm{~mol} / L$ concentration of sulfate ions is mixed with forty litres water having $4.0 \mu \mathrm{~mol} / \mathrm{L}$ sulfate ions. If 50% of the total water evaporated, what would be sulfate concentration in the remaining water
(a) $3 \mu \mathrm{~mol} / \mathrm{L}$
(b) $3.3 \mu \mathrm{~mol} / \mathrm{L}$
(c) $4 \mu \mathrm{~mol} / \mathrm{L}$
(d) $6.7 \mu \mathrm{~mol} / \mathrm{L}$

Ans.: (d)
Q4. Consider two datasets \mathbf{A} and \mathbf{B}, each with 3 observations, such that both the datasets have the same median. Which of the following MUST be true?
(a) Sum of the observations in $\mathbf{A}=$ Sum of the observations in \mathbf{B}.
(b) Median of the squares of the observations in $\mathbf{A}=$ Median of the squares of the observations
in B.
(c) The median of the combined dataset $=$ median of $\mathbf{A}+$ median of \mathbf{B}.
(d) The median of the combined dataset $=$ median of \mathbf{A}.

Ans.: (d)
Q5. If two trapeziums of the same height, as shown below, can be joined to form a parallelogram of area $2(a+b)$, then the height of the parallelogram will be

(a) 4
(b) 1
(c) $1 / 2$
(d) 2

Ans.: (b)

Q6. Three consecutive integers a, b, c, add to 15 . Then the value of $(a-2)^{2}+(b-2)^{2}+(c-2)^{2}$ would be
(a) 25
(b) 27
(c) 29
(d) 31

Ans.: (c)
Q7. Two semicircles of same radii centred at A and C, touching each other, are placed between two parallel lines, as shown in the figure. The angle BAC is

(a) 30°
(b) 35^{0}
(c) 45^{0}
(d) 60°

Ans.: (a)
Q8. Three friends having a ball each stand at the three corners of a triangle. Each of them throws her ball independently at random to one of the others, once. The probability of two friends throwing balls at each other is
(a) $1 / 4$
(b) $1 / 8$
(c) $1 / 3$
(d) $1 / 2$

Ans.: (a)
Q9. A 50 litre mixture of paint is made of green, blue, and red colours in the ratio 5:3:2. If another 10 litre of red colour is added to the mixture, what will be the new ratio?
(a) $5: 2: 4$
(b) 4:3:2
(c) $2: 3: 5$
(d) 5:3:4

Ans.: (d)
Q10. A building has windows of sizes 2, 3 and 4 feet and their respective numbers are inversely proportional to their sizes. If the total number of windows is 26 , then how many windows are there of the largest size?
(a) 4
(b) 6
(c) 12
(d) 9

Ans.: (b)
Q11. Given only one full 3 litre bottle and two empty ones of capacities 1 litre and 4 litres, all ungraduated, the minimum number of pourings required to ensure 1 litre in each bottle is
(a) 2
(b) 3
(c) 4
(d) 5

Ans.: (b)
Q12. At a spot S en-route, the speed of a bus was reduced by 20% resulting in a delay of 45 minutes. Instead, if the speed were reduced at 60 km after S , it would have been delayed by 30 minutes. The original speed, in km / h, was
(a) 90
(b) 80
(c) 70
(d) 60

Ans.: (d)

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
Q13. Three fair cubical dice are thrown, independently. What is the probability that all the dice read the same?
(a) $1 / 6$
(b) $1 / 36$
(c) $1 / 216$
(d) $13 / 216$

Ans.: (b)
Q14. Sum of all the internal angels of a regular octagon is \qquad degrees.
(a) 360
(b) 1080
(c) 1260
(d) 900

Ans.: (b)
Q15. Persons A and B have 73 secrets each. On some day, exactly one of them discloses his secret to the other. For each secret A discloses to B in a given day, B discloses two secrets to A on the next day. For each secret B discloses to A in a given day, A discloses four secrets to Bon the next day. The one who starts, starts by disclosing exactly one secret. What is the smallest possible number of days it takes for B to disclose all his secrets?
(a) 5
(b) 6
(c) 7
(d) 8

Ans.: (a)
Q16. When a student in Section A who scored 100 marks in a subject is exchanged for a student in Section B who scored 0 marks, the average marks of the Section A falls by 4 , while that of Section B increases by 5 . Which of the following statements is true?
(a) A has the same strength as B
(b) A has 5 more strength than B
(c) B has 5 more strength than A
(d) The relative strengths of the classes cannot be assessed from the data

Ans.: (b)
Q17. What is the largest number of father-son pairs that can exist in a group of four men?
(a) 3
(b) 2
(c) 4
(d) 6

Ans.: (a)
Q18. Price of an item is increased by 20% of its cost price and is then sold at 10% discount for Rs. 2160. What is its cost price?
(a) 1680
(b) 1700
(c) 1980
(d) 2000

Ans.: (d)

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
Q19. If the sound of its thunder is heard 1s after a lightning was observed, how far away (in m) was the source of thunder/lightning from the observer (given, speed of sound $=x \mathrm{~ms}^{-1}$ speed of light $\left.=y \mathrm{~ms}^{-1}\right)$?
(a) x^{2} / y
(b) $x y /(y-x)$
(c) $x y /(x-y)$
(d) y^{2} / x

Ans.: (b)
Q20. The populations and gross domestic products (GDP) in billion USD of three countries A, B and C in the years 2000,2010 and 2020 are shown in the two figures below.

The decreasing order of per capita GDP of these countries in the year 2020 is
(a) A, B, C
(b) A, C, B
(c) B, C, A
(d) C, A, B

Ans.: (a)

Pravegaal Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

Part-B

Q1. A uniform circular diss on the $x y$ plane with its canter at the origin has a moment of inertia I_{0} about the x-axis. If the disc is set in rotation about the origin with an angular velocity $\omega=\omega_{0}(\hat{j}+\hat{k})$ the direction of its angular momentum is along
(a) $-\hat{i}+\hat{j}+\hat{k}$
(b) $-\hat{i}+\hat{j}+2 \hat{k}$
(c) $\hat{j}+2 \hat{k}$
(d) $\hat{j}+\hat{k}$

Ans.: (c)
Solution: The moment of inertia of disc about an z axis is $\frac{M R^{2}}{2}$. MI of disc about x and y axis is $\frac{M R^{2}}{4}=I_{0}$ the product of inertia is given by 0 . the moment of inertia tensor is given by $\left[\begin{array}{ccc}I_{0} & 0 & 0 \\ 0 & I_{0} & 0 \\ 0 & 0 & 2 I_{0}\end{array}\right]$ the angular velocity is given by $\vec{\omega}=\omega_{0}\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$ so angular momentum is $\vec{L}=I \vec{\omega} \Rightarrow L=I_{0} \omega_{0}\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$ so angular momentum is $\hat{j}+2 \hat{k}$

Topic-Classical mechanics

Sub topic: moment of inertia tensor

Q2. The locus of the curve $\operatorname{Im}\left(\frac{\pi(z-1)-1}{z-1}\right)=1$ in the complex z-plane is a circle centered at ($x_{0} y_{0}$) and R-respectively are
(a) $\left(1, \frac{1}{2}\right)$ and $\frac{1}{2}$
(b) $\left(1,-\frac{1}{2}\right)$ and $\frac{1}{2}$
(c) $(1,1)$ and 1
(d) $(1,-1)$ and 1

Topic-Mathematical Physics

Sub topic: Complex analysis
Ans. : (b)
Solution: $\frac{\pi(x+i y-1)+1}{x+i y-1}=\frac{(\pi x-\pi-1)+i \pi y}{(x-1)+i y}=\frac{((\pi x-\pi-1)+i \pi y)((x-1)-i y)}{(x-1)^{2}+y^{2}}$
$\frac{\pi y(x-1)-y(\pi x-\pi-1)}{(x-1)^{2}+y^{2}}=\frac{\pi y x-\pi y-\pi y x+\pi y+y}{(x-1)^{2}+y^{2}}$
$\frac{y}{(x-1)^{2}+y^{2}}=1,(x-1)^{2}+y^{2}=y,(x-1)^{2}+y^{2}-y=0$
$(x-1)^{2}+\left(y+\frac{1}{2}\right)^{2}=\frac{1}{4} ; \quad$ Centre $\left(1,-\frac{1}{2}\right)$, Radius $=\frac{1}{2}$
H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

Pravegaee Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
Q3. The value of $\left\langle L_{x}{ }^{2}\right\rangle$ in the state $|\varphi\rangle$ for which $L_{x}{ }^{2}|\varphi\rangle=6 \hbar^{2}|\varphi\rangle$ and $L_{z}|\varphi\rangle=2 \hbar|\varphi\rangle$ is
(a) 0
(b) $4 \hbar^{2}$
(c) $2 \hbar^{2}$
(d) \hbar^{2}

Topic-Quantum Mechanics
 Sub topic: Angular momentum

Ans.: (d)
Solution: $L^{2}|\phi\rangle=6 \hbar^{2}|\phi\rangle, L_{z}|\phi\rangle=2 \hbar|\phi\rangle$ so $|\phi\rangle=Y_{2}^{2}$, so $l=2, m=2$
$\left\langle L_{x}^{2}\right\rangle$ on any Y_{l}^{m} is $\frac{l(l+1) \hbar^{2}-m^{2} \hbar^{2}}{2}=\frac{6 \hbar^{2}-4 \hbar^{2}}{2}=\hbar^{2}$
Q4. A small circular wire loop of radius a and number of turns N, is oriented with its axis parallel to the direction of the local magnetic field B.A resistance and Galvano meter are connected to the coil as shown in then figure

When the coil is flipped (i.e. the direction of its axis is reversed) the galvanometer measures the total charge Q that flow through it. If the induce emf through the coil $E_{F}=I R$ then Q is

(a) $\pi N a^{2} B / 2 R$
(b) $\pi N a^{2} B / R$
(c) $\sqrt{2} \pi N a^{2} B / R$
(d) $2 \pi N a^{2} B / R$
Sub topic: Faraday’s law

Ans.: (d)
Solution: Change in flux $B A-(-B A)=2 B A$

$$
\begin{aligned}
& \varepsilon=N \frac{d \phi_{B}}{d t} \Rightarrow I R=N \frac{d \phi_{B}}{d t} \\
& \Delta Q R=N \Delta \phi_{B} \Rightarrow \Delta Q=\frac{N \Delta \phi_{B}}{R} \Rightarrow \Delta Q=\frac{2 N B \pi a^{2}}{R}
\end{aligned}
$$

Q5. The dispersion relation of a gas of non-interacting bosons in two dimensions is $E(k)=c \sqrt{k}$ where c is a positive constant. At low temperatures, the leading dependence of the specific heat on temperature T is
(a) T^{4}
(b) T^{3}
(c) T^{2}
(d) $T^{3 / 2}$

Topic-Solid state

Sub topic: Heat capacity

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
Ans.: (a)
Solution: From the given equation

$$
E(k)=c \sqrt{k}
$$

We can say $\omega \alpha \sqrt{k} \Rightarrow n=\frac{1}{2}$
Now the specific heat in d dimension d can be written as $C=T^{\frac{d}{n}}$
In $2-d, C=T^{\frac{2}{1 / 2}}=T^{4}$
Q6. In the circuit below, there is a voltage drop of 0.7 V across the diode in forward bias while no current flows through it in reverse bias.
30Ω

In $V_{i n}$ is a sinusoidal signal of frequency 50 Hz with rms value of 1 V the maximum current that flows through the diode is closest to
(a) 1 A
(b) 0.14 A
(c) 0 A
(d) 0.07 A

Topic-Electronics

Sub topic: Op-amp
Ans.: (c)
Solution: Given that,

$$
\begin{aligned}
& V_{\text {in }}=V_{o} \sin (\omega t), \quad V_{r m s}=1 V, \quad V_{o}=\sqrt{2} V=1.44 \mathrm{~V}, f=50 \mathrm{~Hz}, \frac{V_{i n}-V_{D}}{20}=\frac{V_{D}-0}{10} \\
& V_{D}=\frac{V_{\text {in }}}{3}=\frac{1.44}{3}<0.7 \mathrm{~V} \Rightarrow I=0
\end{aligned}
$$

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

Q7. The trajectory of a particle moving in a plane is expressed in polar coordinates (r, θ) by the equation $r=r_{0} e^{\beta t}$ and $\frac{d \theta}{d t}=\omega$ where the parameters r_{0}, β and ω are positive. Let v_{r} and a_{r} denote the velocity and acceleration, respectively, in the radial direction. For this trajectory
(a) $a_{r}<0$ at all times irrespective of the values of the parameters
(b) $a_{r}>0$ at all times irrespective of the values of the parameters
(c) $\frac{d v_{r}}{d t}>0$ and $a_{r}>0$ for all choices of parameters
(d) $\frac{d v_{r}}{d t}>0$ however, $a_{r}=0$ for some choices of parameters

Topic- Classical mechanics

Sub topic: newton's law in polar coordinate
Ans.: (d)
Solution: $r=r_{0} \exp \beta t$ and $\frac{d \theta}{d t}=\omega$
$v_{r}=\frac{d r}{d t}=r_{0} \beta \exp \beta t \Rightarrow \frac{d v_{r}}{d t}=r_{0} \beta^{2} \exp \beta t>0$
$a_{r}=\ddot{r}-\dot{\theta} r=r_{0} \beta^{2} \exp \beta t-\omega^{2} r_{0} \exp \beta t \Rightarrow\left(\beta^{2}-\omega^{2}\right) r_{0} \exp \beta t=\left(\beta^{2}-\omega^{2}\right) r$ which will zero for $\omega=\beta$
Q8. A long cylindrical wire of radius R and conductivity σ, lying along the z-axis, carries a uniform axial current density I. The Poynting vector on the surface of the wire is (in the following $\hat{\rho}$ and $\hat{\varphi}$ denote the unit vectors
(a) $\frac{I^{2} R}{2 \sigma} \hat{\rho}$
(b) $-\frac{I^{2} R}{2 \sigma} \hat{\rho}$
(c) $-\frac{I^{2} \pi R}{4 \sigma} \hat{\varphi}$
(d) $\frac{I^{2} \pi R}{4 \sigma} \hat{\varphi}$

Topic-EMT
Sub topic: Poynting vector
Ans.: (b)
Solution: $\vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B} ; \quad J=\sigma E$

$$
\begin{aligned}
& =\frac{1}{\mu_{0}} \frac{J}{\sigma} \hat{z} \times \frac{\mu_{0} I}{2 \pi R} \hat{\varphi}, J=\frac{I}{\pi R^{2}} \\
& =\frac{I}{\sigma \pi R^{2}} \cdot \frac{I}{2 \pi R}(-\hat{\rho}), \quad=\frac{I^{2} R}{2 \sigma}(-\hat{\rho})
\end{aligned}
$$

H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
Q9. A charged particle moves uniformly on the $x y$-plane along a circle of radius a centered at the origin. A detector is put at a distance d on the x axis is to detect the electromagnetic wave radiated by the particle along the x direction. If $d \gg a$, the wave received by detector is
(a) unpolarized
(b) circularly polarized with the plane of polarization being the yz-plane
(c) linearly polarized along the y-direction
(d) linearly polarized along the z-direction

Topic-EMT
Sub topic: Polarization
Ans.: (c)
Solution: It will be plane polarized light along y direction.
Q10. The single particle energies of a system of N non-interacting fermions of spin $s($ at $T=0)$ are

$$
E_{n}=n^{2} E_{0}, n=1,2,3, \ldots \ldots . \text { The ratio of } \frac{\varepsilon_{F}\left(\frac{3}{2}\right)}{\varepsilon_{F}\left(\frac{1}{2}\right)} \text { the Fermi energy of Fermions of spin } \frac{3}{2} \text { and } \frac{1}{2} \text { is }
$$

(a) $\frac{1}{2}$
(b) $\frac{1}{4}$
(c) 2
(d) 1

Ans.: (b)
Solution: There will be 4 spin $\frac{3}{2}$ can stay in each level
Thus, $\varepsilon_{F}\left(\frac{3}{2}\right)=\left(\frac{N}{4}\right)^{2} E_{0}$
There will be 2 spin $\frac{1}{2}$ can stay in each level
$\varepsilon_{F}\left(\frac{1}{2}\right)=\left(\frac{N}{2}\right)^{2} E_{0}$
$\frac{\varepsilon_{F}\left(\frac{3}{2}\right)}{\varepsilon_{F}\left(\frac{1}{2}\right)}=\frac{1}{4}$

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
Q11. The Hamiltonian of a two-dimensional quantum harmonic oscillator is $H=\frac{p_{x}{ }^{2}}{2 m}+\frac{p_{y}{ }^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}+2 m \omega^{2} y^{2}$ where m and ω are positive constants. The degeneracy of the energy level $\frac{27}{2} \hbar \omega$ is
(a) 14
(b) 13
(c) 8
(d) 7

Topic-Quantum Mechanics

Sub topic: 2D Harmonic oscillator
Ans.: (d)
Solution: $H=\frac{p_{x}^{2}}{2 m}+\frac{p_{y}^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}+2 m \omega^{2} y^{2}=\frac{p_{x}^{2}}{2 m}+\frac{p_{y}^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}+\frac{1}{2} m(2 \omega)^{2} y^{2}$
$\omega_{x}=\omega, \omega_{y}=2 \omega$
For two-dimensional harmonic oscillator energy
$E_{n_{x}, n_{y}}=\left(n_{x}+\frac{1}{2}\right) \hbar \omega_{x}+\left(n_{y}+\frac{1}{2}\right) \hbar \omega_{y}=\left(n_{x}+\frac{1}{2}\right) \hbar \omega+\left(n_{y}+\frac{1}{2}\right) \hbar 2 \omega$
where $n_{x}=0.1 .2 \ldots, n_{y}=0,1,2 \ldots$
For given state $E_{n_{x}, n_{y}}=\frac{27}{2} \hbar \omega\left(n_{x}+\frac{1}{2}\right) \hbar \omega+\left(n_{y}+\frac{1}{2}\right) \hbar 2 \omega=\frac{27}{2} \hbar \omega$
$\left(n_{x}+2 n_{y}+\frac{3}{2}\right) \hbar \omega=27 \frac{\hbar \omega}{2} \Rightarrow\left(2 n_{x}+4 n_{y}+3\right)=27 \Rightarrow\left(2 n_{x}+4 n_{y}\right)=24 \Rightarrow n_{x}+2 n_{y}=12$
The combination of $\left(n_{x}, n_{y}\right)$ which will satisfy the constrain $n_{x}+2 n_{y}=12$ with $n_{x}=0.1 .2 \ldots$, $n_{y}=0,1,2 \ldots$ is $(0,6),(2,5),(4,4),(6,3),(8,2),(10,1),(12,0)$ so there is seven fold degeneracy

Q12. The minor axis of Earth's elliptical orbit divides the area within it into two halves. The eccentricity of the orbit is 0.0167 . The difference in time spent by Earth in the two halves is closest to
(a) 3.9 days
(b) 4.8 days
(c) 12.3 days
(d) 0 days

Topic-Classical Mechanics
Sub topic: Central force
Ans.: (a)
Solution: Apply the concept of Kepler's law
The areal velocity is constant,
From above figure,

The area of MSBDM $=\frac{\pi a b}{2}+\frac{1}{2} 2 b \times a e=\frac{\pi a b}{2}+b a e$
The area of MCBS $=\frac{\pi a b}{2}-b a e$
Now we know

$$
\frac{d A}{d t}=\text { constant }
$$

$$
\frac{\frac{\pi a b}{2}+b a e}{t_{1}}=\frac{\frac{\pi a b}{2}-b a e}{t_{2}} \Rightarrow \frac{t_{1}}{t_{2}}=\frac{\frac{\pi}{2}+e}{\frac{\pi}{2}-e} \Rightarrow t_{1}=\frac{\frac{\pi}{2}+e}{\pi} \& t_{2}=\frac{\frac{\pi}{2}-e}{\pi} \Rightarrow t_{1}-t_{2}=\frac{2 e}{\pi} \times 365 \mathrm{days}
$$

$$
=\frac{2 \times 0.0167}{\pi} \times 365 \text { days }=3.88 \text { days }
$$

Q13. For the given logic circuit, the input waveforms A, B, C and D are shown as a function of time.

To obtain the output Y as shown in the figure, the logic gate X should be
(a) 1 an AND Gate
(b) an OR gate
(c) a NAND gate
(d) a NOR gate

Topic-Electronics

Sub topic: Digital

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
Ans. : (b)
Solution: From the output, we can make k-maph which clearly shows that the out put can be simplified
as
$y=\bar{A} \bar{B}+\bar{A} \bar{C}+\bar{A} D$

$C D$	$\bar{C} \bar{D}$ 00	$\bar{C} D$ 01	CD 11	$C D$ 10
$\bar{A} \bar{B} 10$	1	1	1	1
$\bar{A} B \quad 00$	1	1	1	0
$A B^{01}$	0	0	0	0
$A \bar{B} 11$	0	0	0	0

This output we can achieve if the unknown logic is OR gate.

Q14. The radial wavefunction of hydrogen atom with the principal quantum number $n=2$ and the orbital quantum $R_{20}=N\left(1-\frac{r}{2 a}\right) e^{-\frac{r}{2 a}}$ where N is the normalized constant. The best schematic representation of the probability density $p(r)$ for the electron to be between r and $r+d r$ is
(a)
(c)

(b)
(d)

Topic-Quantum Mechanics
Sub topic: Hydrogen Atom
H.N. 28 A/1, Jia Sarai, Near IIT-Delhi, Hauz Khas, New Delhi-110016
\#: +91-89207-59559

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

Ans.: (a)
Solution: $R_{20}=N\left(1-\frac{r}{2 a_{0}}\right) \exp -\frac{r}{2 a_{0}}$
The radial probability density $\rho(r)=\left|R_{2,0}\right|^{2} r^{2} \Rightarrow\left(1-\frac{r}{2 a_{0}}\right)^{2} r^{2} \exp \left(-\frac{r}{a_{0}}\right)$
The correct plot is option 1 fig
Q15. A one-dimensional rigid rod is constrained to move inside a sphere such that its two ends are always in contact with the surface. The number of constraints on the Cartesian coordinates of the endpoints of the rod is
(a) 3
(b) 5
(c) 2
(d) 4

Topic-Classical Mechanics

Sub topic: DOF
Ans.: (a)
Solution: The equation of constrain is $x_{1}^{2}+y_{1}^{2}+z_{1}^{2}=R^{2}, x_{2}^{2}+y_{2}^{2}+z_{2}^{2}=R^{2}$,
And $\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}=l$ where R is radius of sphere and l is length of rod
So number of holonomic constrain is $3 k=3, N=2$ so $D O F=3 N-K=3 \times 2-3=2$
Q16. A DC motor is used to lift a mass M to a height H from the ground. The electric energy delivered to the motor is VIt, where V is the applied voltage, I is the current and t the time for which the motor runs. The efficiency e of the motor is the ratio between the work done by the motor and the energy delivered to it. If $M=2.0 \pm 0.02 \mathrm{~kg}, h=1.00 \pm 0.01 \mathrm{~m}, V=10.0 \pm 0.1 \mathrm{~V}, I=$ $2.00 \pm 0.02 \mathrm{~A}$ and $t=300 \pm 15 \mathrm{~s}$, then the fractional error $|\delta e / e|$ in the efficiency of the motor is closest to
(a) 0.05
(b) 0.09
(c) 0.12
(d) 0.15

Topic-Experimental Technique

Sub topic: Error Analysis
Ans. (a)

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
Q17. A particle in one dimension is in an infinite potential well between $-\frac{L}{2} \leq x \leq \frac{L}{2}$. For a perturbation $\varepsilon \cos \left(\frac{\pi x}{L}\right)$ where ε is a small constant, the change in the energy of the ground state, to first order in ε is $-\frac{L}{2} \leq x \leq \frac{L}{2}$
(a) $\frac{5 \varepsilon}{\pi}$
(b) $\frac{10 \varepsilon}{3 \pi}$
(c) $\frac{8 \varepsilon}{3 \pi}$
(d) $4 \frac{4 \varepsilon}{\pi}$

Topic-Quantum Mechanics

Sub topic: Infinite potential well
Ans.: (a)
Solution: $V(x)=\left\{\begin{array}{l}0,-\frac{L}{2} \leq x \leq \frac{L}{2} \\ \infty, \text { otherwise }\end{array}\right.$
The ground state wave function is $\phi_{1}=\left\{\begin{array}{c}\sqrt{\frac{2}{L}} \cos \frac{\pi x}{L},-\frac{L}{2} \leq x \leq \frac{L}{2} \\ 0, \text { otherwise }\end{array}\right.$

$$
\begin{aligned}
& E_{1}^{1}=\int_{-L / 2}^{L / 2} \phi_{1}^{*} W \phi_{1} d x=\frac{2}{L} \int_{-L / 2}^{L / 2} \cos \frac{\pi x}{L} \cos ^{2} \frac{\pi x}{L} d x=\frac{2}{L} \int_{-L / 2}^{L / 2} \cos \frac{\pi x}{L}\left(1-\sin ^{2} \frac{\pi x}{L}\right) d x \\
& =\frac{2}{L} \cdot 2\left(\int_{0}^{L / 2} \cos \frac{\pi x}{L}-\int_{0}^{L / 2} \cos \frac{\pi x}{L} \sin ^{2} \frac{\pi x}{L}\right)=\frac{4}{L}\left(\left(\frac{\sin \frac{\pi}{2}}{\frac{\pi}{L}}\right)-\frac{\sin ^{3} \frac{\pi}{2}}{3 \frac{\pi}{L}}\right)=\frac{4}{\pi}\left(1-\frac{1}{3}\right)=\frac{8}{3 \pi}
\end{aligned}
$$

Q18. The Hamiltonian of a two particle system is $H=p_{1} p_{2}+q_{1} q_{2}$ where q_{1} and q_{2} are generalized coordinates and p_{1} and p_{2} are the respective canonical momenta. The Lagrangian of this system is
(a) $q_{1} q_{2}+q_{1} q_{2}$
(b) $-q_{1} q_{2}+q_{1} q_{2}$
(c) $-q_{1} q_{2}-q_{1} q_{2}$
(d) $q_{1} q_{2}-q_{1} q_{2}$

Topic-Classical Mechanics

Sub topic: Hamiltonian
Ans.: (d)
Solution: $H=p_{1} p_{2}+q_{1} q_{2}$

$$
L=p_{1} \dot{q}_{1}+p_{2} \dot{q}_{2}-H \Rightarrow p_{1} \dot{q}_{1}+p_{2} \dot{q}_{2}-p_{1} p_{1}-q_{1} q_{1}
$$

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

$$
\begin{aligned}
& \frac{\partial H}{\partial p_{1}}=\dot{q}_{1} \Rightarrow p_{2}=\dot{q}_{1}, \frac{\partial H}{\partial p_{2}}=\dot{q}_{2} \Rightarrow p_{1}=\dot{q}_{2} \\
& H=\dot{q}_{2} \dot{q}_{1}+\dot{q}_{1} \dot{q}_{2}-\dot{q}_{1} \dot{q}_{2}-q_{1} q_{2} \Rightarrow H=\dot{q}_{2} \dot{q}_{1}-q_{1} q_{2}
\end{aligned}
$$

Q19. The value of the integral $I=\int_{0}^{\infty} e^{-x} x \sin (x) d x$
(a) $\frac{3}{4}$
(b) $\frac{2}{3}$
(c) $\frac{1}{2}$
(d) $\frac{1}{4}$

Ans. : (c)
Solution: We know from the Laplace transformation
$L(\operatorname{Sin} x)=\int_{0}^{\infty} e^{-s x} \sin (a x) d x=\frac{a}{s^{2}+1}=f(s)$
Also, we know $L\left(x^{n} \operatorname{Sin} x\right)=\int_{0}^{\infty} e^{-s x} x^{n} \sin (a x) d x=(-1)^{n} \frac{d^{n}}{d s^{n}} f(s)$
Now for $I=\int_{0}^{\infty} e^{-x} x \sin (x) d x, \quad f(s)=\frac{1}{s^{2}+1}, a=1, s=1$
$I=\int_{0}^{\infty} e^{-x} x \sin (x) d x=-1 \frac{d}{d s} \frac{1}{s^{2}+1}=\frac{2 s}{\left(s^{2}+1\right)^{2}}=\frac{2}{4}=\frac{1}{2}[\because s=1]$
Q20. The energy levels available to each electron in a system of N non-interacting electrons are $E_{n}=n E_{0}$ $n=0,1,2, \cdots$. A magnetic field, which does not affect the energy spectrum, but completely polarizes the electron spins, is applied to the system. The change in the ground state energy of the system is
(a) $\frac{n^{2} E_{0}}{2}$
(b) $n^{2} E_{0}$
(c) $\frac{n^{2} E_{0}}{8}$
(d) $\frac{n^{2} E_{0}}{4}$

Topic- Statistical Mechanics
Sub topic: Distribution of spin half particle
Ans. : (d)
Solution: The energy levels are given by,

$$
E_{n}=n E_{0}
$$

Case I For electrons Unpolarized both states available

$$
E_{1}=2 E_{0}\left(0+1+2+\ldots .+\left(\frac{N}{2}-1\right)\right)=2 E_{0} \frac{\left(\frac{N}{2}+1\right) \frac{N}{2}}{2}
$$

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
Case 2 For electrons polarized one state available so Paulis exclusion principle will be applied.
One particle one quantum state.

$$
E_{2}=E_{0}(0+1+\ldots+(N-1))=E_{0}(N+1) \frac{N}{2}
$$

The difference in ground state

$$
E_{2}+E_{1}=\frac{N^{2}}{4} E_{0}
$$

Q21. The matrix $M=\left(\begin{array}{ccc}3 & -1 & 2 \\ -1 & 2 & 0 \\ 2 & 0 & 1\end{array}\right)$ satisfies the equation

$$
M^{3}+\alpha M^{2}+\beta M+3=0 \text { if }(\alpha, \beta) \text { are }
$$

(a) $(-2,2)$
(b) $(-3,3)$
(c) $(-6,6)$
(d) $(-4,4)$

Topic-Mathematical Physics
Sub topic: Matrix
Ans.: (c)
Solution: $\lambda=\left(\begin{array}{ccc}3 & -1 & 2 \\ -1 & 2 & 0 \\ 2 & 0 & 1\end{array}\right) \quad|M-\lambda I|=\left|\begin{array}{ccc}3-\lambda & -1 & 2 \\ -1 & 2-\lambda & 0 \\ 2 & 0 & 1-\lambda\end{array}\right|$
$(3-\lambda)[(2-\lambda)(1+\lambda)-0]+2(-2(2-\lambda))+1(-1(1-\lambda))=0$
$(3-\lambda)(2-\lambda)(1-\lambda)-4(2-\lambda)-1(1-\lambda)=0$
$(2-\lambda)\left(3+\lambda^{2}-3 \lambda-\lambda+4\right)-1(1-\lambda)=0$
$(2-\lambda)\left(\lambda^{2}-4 \lambda+1\right)-1+\lambda=0$
$2 \lambda^{2}-8 \lambda-2-\lambda^{3}+4 \lambda^{2}+\lambda-1+\lambda=0$
$-\lambda^{3}-6 \lambda^{2}+6 \lambda-3=0$
$-\lambda^{3}-6 \lambda^{2}+6 \lambda+3=0$
$\alpha=-6, \beta=6$

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

Q22. A circuit needs to be designed to measure the resistance R of a cylinder $P Q$ to the best possible accuracy, using an ammeter A, a voltmeter V, a battery E and a current source I_{S} (all assumed to be ideal). The value of R is known to be approximately 10Ω, and the resistance W of each of the connecting wires is close to 10Ω. If the current from the current source and voltage from the battery are known exactly, which of the following circuits provides the most accurate measurement of R ?
(a)

(b)

(c)

(d)

(a) B
(b) A
(c) C
(d) A

Ans.: (b)
Solution: Since the constant current source is given. You can use the current source to floe the current to flow the current in the cylinder. Now we can use the four probe technique. Two leads will be used for the measurement of current and another two will be used for measurement of voltage. This is the ideal volt meter, the resistance will be very high. So the no current will be flow here. Now you are measuring voltage across the length, so the problem with contact. So, this technique will be used for medium or smaller resistance. This is the correct circuit to measure the accurate resistance of this cylinder. So, the correct option will be (b).

Q23. The electric potential on the boundary of a spherical cavity of radius R as a function of the polar angle θ is $V_{0} \cos ^{2} \frac{\theta}{2}$. The charge density inside the cavity is zero everywhere. The potential at a distance $\frac{R}{2}$ from the canter of the sphere is
(a) $\frac{V_{0}}{2}\left(1+\frac{\cos (\theta)}{2}\right)$
(b) $\frac{V_{0}}{2} \cos (\theta)$
(c) $\frac{V_{0}}{2}\left(1+\frac{\operatorname{Sin}(\theta)}{2}\right)$
(d) $\frac{V_{0}}{2} \sin (\theta)$

Topic-EMT
Sub topic: Electrostatic
Ans. : (a)
Solution: $V(r, \theta)=\sum\left(A_{l} r^{\ell}+\frac{B_{l}}{r^{\ell+1}}\right) P_{l}(\cos \theta)$

$$
\begin{aligned}
& V(r, \theta)=\sum_{A_{l}} r^{l} P_{\ell}(\cos \theta), \quad \text { at } r=R \\
& V_{0} \operatorname{co}^{2} \frac{\theta}{2}=\sum_{l=0}^{\infty} A_{l} R^{l} P_{l}(\cos \theta) \\
& \frac{V_{0}}{2}[1+\cos \theta]=\sum_{l=0}^{\infty} A_{l} R^{l} P_{l}(\cos \theta) \\
& \frac{V_{0}}{2}+\frac{V_{0}}{2} \cos \theta=\sum_{l=0}^{\infty} A_{l} R^{l} P_{l}(\cos \theta) \\
& \frac{V_{0}}{2} P_{0}(\cos \theta)+\frac{V_{0}}{2} P_{1}(\cos \theta)=A_{0} R^{0} P_{0}(\cos \theta)+A_{1} R^{1} P_{1}(\cos \theta) \\
& A_{0}=\frac{V_{0}}{2}, A_{1} R=\frac{V_{0}}{2}, A_{1}=\frac{V_{0}}{2 R} \\
& V(r, \theta)=\frac{V_{0}}{2}\left(\frac{R}{2}\right)^{0}+\frac{V_{0}}{2 R}\left(\frac{R}{2}\right) \cos \theta
\end{aligned}
$$

Q24. A jar J1 contains equal number of balls of red, blue and green colours, while another jar J2 contains balls of only red and blue colours, which are also equal in number. The probability of choosing J1 is twice as large as choosing J2. If a ball picked at random from one of the jars turns out to be red, the probability that it came from J1 is
(a) $2 / 3$
(b) $3 / 5$
(c) $2 / 5$
(d) $4 / 7$

Topic-Mathematical Physics

Sub topic: Probability
Ans. (d)

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
Q25. Two energy levels, 0 (non-degenerate) and ε (Doubly degenerate), are available to N noninteracting distinguishable particles. If U is the total energy of the system, for large values of N the entropy of the system is $k_{B}\left[N \ln N-\left(N-\frac{U}{\varepsilon}\right) \ln \left(N-\frac{U}{\varepsilon}\right)+X\right]$. In this expression X is
(a) $-\frac{U}{\varepsilon} \ln \left(\frac{U}{2 \varepsilon}\right)$
(b) $-\frac{U}{\varepsilon} \ln \left(\frac{2 U}{\varepsilon}\right)$
(c) $-\frac{2 U}{\varepsilon} \ln \left(\frac{2 U}{\varepsilon}\right)$
(d) $-\frac{U}{\varepsilon} \ln \left(\frac{U}{\varepsilon}\right)$

Topic-Thermodynamics and statistical mechanics
Sub topic: Entropy
Ans.: (a)
Solution: $N=n_{1}+n_{2}+n_{3}$

$$
\begin{equation*}
U=n_{1} .0+n_{2} \times \varepsilon+n_{3} \times \varepsilon \Rightarrow \varepsilon=\frac{U}{n_{2}+n_{3}} \ldots \ldots \tag{2}
\end{equation*}
$$

From equation (1)

$$
\begin{aligned}
& N=n_{1}+n_{2}+n_{3} \Rightarrow n_{1}=N-\frac{U}{\varepsilon} \\
\Omega & ={ }^{N} C_{n_{1}} \times{ }^{N-n_{1}} C_{n_{2}} \times{ }^{N-n_{1}-n_{2}} C_{n_{3}} \\
S & =k_{B}\left[N \ln N-N-n_{1} \ln n_{1}+n_{1}-n_{2} \ln n_{2}+n_{2}-n_{3} \ln n_{3}+n_{3}\right] \\
S & =k_{B}\left[N \ln N-\left(N-\frac{U}{\varepsilon}\right) \ln \left(N-\frac{U}{\varepsilon}\right)-2 \frac{U}{2 \varepsilon} \ln \frac{U}{2 \varepsilon}\right]
\end{aligned}
$$

If we compare with original equation then we will get $X=-\frac{U}{\varepsilon} \ln \left(\frac{U}{2 \varepsilon}\right)$

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

Part-C

Q1. A jar J1 contains equal number of balls of red, blue and green colours, while another jar J2 contains balls of only red and blue colours, which are also equal in number. The probability of choosing J1 is twice as large as choosing J2. If a ball picked at random from one of the jars turns out to be red, the probability that it came from J1 is
(a) $\frac{2}{3}$
(b) $\frac{3}{5}$
(c) $\frac{2}{5}$
(d) $\frac{4}{7}$

Ans.: (d)

Topic-Mathematical Physics

Sub topic: Probability

Q2. Two random walkers A and B walk on a one-dimensional lattice. The length of each step taken by A is one, while the same for B is two, however, both move towards right or left with equal probability. If they start at the same point, the probability that they meet after 4 steps, is
(a) $\frac{9}{64}$
(b) $\frac{5}{32}$
(c) $\frac{11}{64}$
(d) $\frac{3}{16}$

Ans.: (c)

Topic-Mathematical Physics

Sub topic: Probability
Q3. Let the separation of the frequencies of the first Stokes and the first anti-Stokes lines in the pure rotational Raman Spectrum of the H_{2} molecule be $\Delta v\left(\mathrm{H}_{2}\right)$ while the corresponding quantity for D_{2} is $\Delta v\left(D_{2}\right)$. The ratio $\frac{\Delta v\left(H_{2}\right)}{\Delta v\left(D_{2}\right)}$ is
(a) 0.6
(b) 1.2
(c) 1
(d) 2

Topic-Atomic, Molecular and Laser
Sub topic: Raman effect
Ans.: (d)
Solution: The separation between first Stokes and first Anti-Stokes line for H_{2} is $\Delta v\left(H_{2}\right)=12 B_{1}$.
The separation between first Stokes and first Anti-Stokes line for D_{2} is $\Delta v\left(D_{2}\right)=12 B_{2}$.

$$
\begin{aligned}
& \frac{\Delta v\left(H_{2}\right)}{\Delta v\left(D_{2}\right)}=\frac{12 B_{1}}{12 B_{2}}=\frac{I_{2}}{I_{1}}=\frac{\mu_{1}}{\mu_{2}} ; \mu_{2}=\frac{M_{D} \times M_{D}}{2 M_{D}}=\frac{M_{D}}{2}=\frac{2 M_{H}}{2}=M_{H} ; \mu_{2}=\frac{M_{H} \times M_{H}}{2 M_{H}}=\frac{M_{H}}{2} \\
& \Rightarrow \frac{\Delta v\left(H_{2}\right)}{\Delta v\left(D_{2}\right)}=2
\end{aligned}
$$

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
Q4. A random variable Y obeys a normal distribution $P(y)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(Y-\mu)^{2} / 2 \sigma^{2}}$
The mean value of e^{Y} is
(a) $e^{\mu+\frac{\sigma^{2}}{2}}$
(b) $e^{\mu-\sigma^{2}}$
(c) $e^{\mu+\sigma^{2}}$
(d) $e^{\mu-\frac{\sigma^{2}}{2}}$

Topic-Mathematical physics
Sub topic: Probability
Ans. (a)
Solution: $\left\langle e^{y}\right\rangle=\int_{-\infty}^{\infty} e^{y} \frac{1}{\sigma \sqrt{2 \pi}}-\frac{1}{e^{2 r^{2}}}(y-m)^{2}$

$$
-\frac{m^{2}}{e^{2 \sigma^{2}}} \frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2 \sigma^{2}} y^{2}}+\left(\frac{1}{\sigma^{2}} \mu+1\right) y
$$

$$
\frac{1}{\sigma \sqrt{2 \pi}} e^{-m^{2} / 2 \sigma^{2}} \sqrt{\frac{\hbar}{\sqrt{2 \sigma^{2}}}} e^{\left(\frac{\mu}{\sigma^{2}}+1\right)^{2}}
$$

$\int_{-\infty}^{\infty} e^{-a x^{2}+b x} d x=\sqrt{\frac{\pi}{a}} e$
$e^{-\mu^{2} / 2 \sigma^{2}}, e^{\frac{(\mu+1)^{2}}{\sigma^{2}} \cdot \frac{\sigma^{2}}{2}}, e^{-\frac{\mu^{2}}{2 \sigma}} \cdot e^{\left(\frac{\mu^{2}}{\sigma^{4}}+1+\frac{\mu}{\sigma^{2}}\right)} \frac{\sigma^{2}}{2}, e^{r} \cdot e^{x}+\frac{\sigma^{2}}{2} \cdot e^{-\frac{\mu^{2}}{2 \sigma^{2}}+\frac{\mu^{2}}{2 \sigma^{2}}}$
Q5. Two distinguishable non-interacting particles, each of mass m are in a one-dimensional infinite square well in the interval $[0, a]$. If x_{1} and x_{2} are position operators of the two particles, the expectation value $\left\langle x_{1} x_{2}\right\rangle$ in the state in which one particle is in the ground state and the other one is in the first excited state, is
(a) $\frac{a^{2}}{2}$
(b) $\frac{\pi^{2} a^{2}}{2}$
(c) $\frac{a^{2}}{4}$
(d) $\frac{\pi^{2} a^{2}}{4}$

Topic-Quantum Mechanics

Sub topic: Particle in a box
Ans.: (c)
Solution: $\psi\left(x_{1}, x_{2}\right)=\left(\sqrt{\frac{2}{a}} \sin \frac{\pi x_{1}}{a}\right) \sqrt{\frac{2}{a}} \sin \frac{2 \pi x_{2}}{a}$ for $0 \leq x_{1} \leq a, 0 \leq x_{2} \leq a$

$$
\left\langle x_{1} \cdot x_{2}\right\rangle=\left(\frac{2}{a} \int_{0}^{a} x_{1} \sin ^{2} \frac{\pi x_{1}}{a} d x_{1}\right)\left(\frac{2}{a} \int_{0}^{a} x_{2} \sin ^{2} \frac{2 \pi x_{2}}{a} d x_{2}\right)=\left\langle x_{1}\right\rangle\left\langle x_{2}\right\rangle=\frac{a}{2} \times \frac{a}{2}=\frac{a^{2}}{4}
$$

Pravegaal Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
Q6. In a one-dimensional system of N spins the allowed values of each spin are $\sigma_{i}=\{1,2, \ldots \ldots . q\}$ where $q \geq 2$ is an integer. The energy of the system is $-J \sum \delta_{\sigma i, \sigma i+1}$

Where $j>0$ is a constant. If periodic boundary conditions are imposed, the number of ground states of the
(a) q
(b) Nq
(c) q^{N}
(d) 1

Topic-Solid state Physics

Sub topic: Band theory

Ans. : (a)
Q7. An infinitely long solenoid of radius r_{0} centred at origin which produces a time-dependent magnetic field $\frac{\alpha}{\pi r_{0}{ }^{2}} \cos (\omega t)$ (where α and ω are constants) is placed along the z-axis. A circular loop of radius R, which carries unit line charge density is placed, initially at rest, on the $x y$-plane with its centre on the z-axis. If $R>r_{0}$, the magnitude of the angular momentum of the loop is
(a) $\alpha R(1-\cos \omega t)$
(b) $\alpha R \sin (\omega t)$
(c) $\frac{\alpha R}{2}(1-\cos 2 \omega t)$
(d) $\frac{\alpha R}{2} \sin (2 \omega t)$

Topic-EMT

Sub topic-Electrodynamics

Ans. : (a)
Q8. Two electrons in thermal equilibrium at temperature $T=\frac{k_{B}}{\beta}$ can occupy two sites. The energy of the configuration in which they occupy the different sites is $J S_{1} \cdot S_{2}$ (where J>0is a constant and S denotes the spin of an electron), while it is U if they are at the same site. If $U=10 \mathrm{~J}$, the probability for the system to be in the first excited state is
(a) $e^{-3 \beta J / 4} /\left(3 e^{\beta J / 4}+e^{-3 \beta J / 4}+2 e^{-10 \beta}\right)$
(b) $3 e^{-\beta J / 4} /\left(3 e^{-\beta J / 4}+e^{3 \beta J / 4}+2 e^{-10 \beta}\right)$
(c) $e^{-\beta J / 4} /\left(2 e^{-\beta J / 4}+3 e^{3 \beta J / 4}+2 e^{-10 \beta}\right)$
(d) $3 e^{-3 \beta J / 4} /\left(2 e^{\beta J / 4}+3 e^{-3 \beta J / 4}+2 e^{-10 \beta J}\right)$

Topic-Atomic, Molecular and Laser Physics or Statistical mechanics
Sub-topic: Spin-spin interaction
Ans. (b)
Solution: Net spin for two electron system can be written as follows

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

$$
\vec{S}=\vec{S}_{1}+\vec{S}_{2}=1,0 \quad \because \vec{S}_{1} \& \vec{S}_{2}=1 / 2
$$

The interaction Hamiltonian when they are occupying different sites is given as

$$
\begin{aligned}
& H=J S_{1} \cdot S_{2} \\
& \vec{S}^{2}=\left(\vec{S}_{1}+\vec{S}_{2}\right)^{2} \Rightarrow S_{1} \cdot S_{2}=\frac{S^{2}-S_{1}^{2}-S_{2}{ }^{2}}{2} \Rightarrow\left\langle S_{1} \cdot S_{2}\right\rangle=\frac{S(S+1)-S_{1}\left(S_{1}+1\right)-S_{2}\left(S_{2}+1\right)}{2} \\
& H=J S_{1} \cdot S_{2} \Rightarrow E=\langle H\rangle=\frac{J}{2} S(S-1)-S_{1}\left(S_{1}+1\right)-S_{2}\left(S_{2}+1\right) ; \\
& E_{S=1}=\frac{J}{2}[1(1+1)-1 / 2(1 / 2+1)-1 / 2(1 / 2+1)]=J / 4 \\
& E_{S=0}=\frac{J}{2}[0-1 / 2(1 / 2+1)-1 / 2(1 / 2+1)]=-3 J / 4
\end{aligned}
$$

The first excited state energy is $J / 4$
Since, the electrons are spin- $1 / 2$ particle so they will follow Pauli exclusion principles.
If we have two sites A and B. Then the degeneracy to be staying in the same site is 2 .
Now the partition function is defined as

$$
Z=\sum_{i=1}^{N} g_{i} e^{-\beta E_{i}}=2 e^{-10 \beta J}+e^{3 / 4 \beta J}+3 e^{-1 / 4 \beta J}
$$

The probability to be staying in the first excited state is

$$
3 e^{-\beta J / 4} /\left(3 e^{-\beta / 4}+e^{3 \beta / 4}+2 e^{-10 \beta J}\right)
$$

Q9. For the transformation $x \rightarrow X=\frac{\alpha p}{x}, p \rightarrow P=\beta x^{2}$ between conjugate pairs of a coordinate and its momentum, to be canonical, the constants α and β must satisfy
(a) $1+\frac{1}{2} \alpha \beta=0$
(b) $1-\frac{1}{2} \alpha \beta=0$
(c) $1+2 \alpha \beta=0$
(d) $1-2 \alpha \beta=0$

Ans.: (c)
Solution: $X=\frac{\alpha p}{x}, P=\beta x^{2}$

$$
[X, P]=1 \Rightarrow \frac{\partial X}{\partial x} \cdot \frac{\partial P}{\partial p}-\frac{\partial X}{\partial p} \cdot \frac{\partial P}{\partial x}=1 \Rightarrow-\frac{\alpha p}{x^{2}} \cdot 0-\frac{\alpha}{x} \cdot 2 \beta x=1 \Rightarrow 1+2 \alpha \beta=0
$$

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
Q10. The bisection method is used to find a zero x_{0} of the polynomial $f(x)=x^{3}-x^{2}-1$. Since $f(1)=-1$, while $f(2)=3$ the values $a=1$ and $b=2$ are chosen as the boundaries of the interval in which the x_{0} lies. If the bisection method is iterated three times, the resulting value of x_{0} is
(a) $\frac{15}{8}$
(b) $\frac{13}{8}$
(c) $\frac{11}{8}$
(d) $\frac{9}{8}$

Ans.: (c)
Q11. The angular width θ of a distant star can be measured by the Michelson radiofrequency stellar interferometer (as shown in the figure below).

The distance h between the reflectors M_{1} and M_{2} (assumed to be much larger than the aperture of the lens), is increased till the interference fringes (at $\mathrm{P}_{0}, \mathrm{P}$ on the plane as shown) vanish for the first time. This happens for $h=3 \mathrm{~m}$ for a star which emits radiowaves of wavelength 2.7 cm . The measured value of θ (in degrees) is closest to
(a) 1.0.63
(b) 2.0.32
(c) 3.0.52
(d) 4.0.26

Topic-EMT
Sub topic-EM Waves
Ans.: (a)
Solution: $h \sin (\theta)=\lambda$

$$
h \tan (\theta)=\lambda \Rightarrow \theta=\tan ^{-}\left(\frac{2.7}{3}\right)=0.7^{\circ}
$$

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
Q12. A system of two identical masses connected by identical springs, as shown in the figure, oscillates along the vertical direction.

The ratio of the frequencies of the normal modes is
(a) $\sqrt{3-\sqrt{5}}: \sqrt{3+\sqrt{5}}$
(b) $3-\sqrt{5}: 3+\sqrt{5}$
(c) $\sqrt{5-\sqrt{3}}: \sqrt{5+\sqrt{3}}$
(d) $5-\sqrt{3}: 5+\sqrt{3}$

Topic-Classical mechanics

Sub topic-Small Oscillation
Ans.: (a)
Solution: Kinetic energy is given by $T=\frac{1}{2} m \dot{y}_{1}^{2}+\frac{1}{2} m \dot{y}_{2}^{2} \Rightarrow T=\left[\begin{array}{cc}m & 0 \\ 0 & m\end{array}\right]$
The potential energy is $\frac{1}{2} k y_{1}^{2}+\frac{1}{2} k\left(y_{2}-y_{1}\right)^{2}-m g y_{1}-m g y_{2} \Rightarrow V=\left[\begin{array}{cc}2 k & -k \\ -k & k\end{array}\right]$
The secular equation is given as

$$
\begin{aligned}
& {\left[V-\omega^{2} T\right]=0 \Rightarrow\left[\begin{array}{cc}
2 k-\omega^{2} m & -k \\
-k & k-\omega^{2} m
\end{array}\right]=0 \Rightarrow\left(2 k-\omega^{2} m\right)\left(k-\omega^{2} m\right)-k^{2}=0 \Rightarrow} \\
& 2 k^{2}-3 k \omega^{2} m+\omega^{4} m^{2}-k^{2}=0 \Rightarrow k^{2}-3 k \omega^{2} m+\omega^{4} m^{2}=0 \Rightarrow \omega^{2}=\frac{3 k m \pm \sqrt{9 k^{2} m^{2}-4 k^{2} m^{2}}}{m^{2}} \\
& \omega^{2}=\frac{k}{m}(3 \pm \sqrt{5}) \Rightarrow \omega=\sqrt{\frac{k}{m}}((3 \pm \sqrt{5}))^{1 / 2}
\end{aligned}
$$

Ratio is $(3+\sqrt{5})^{1 / 2}:(3-\sqrt{5})^{1 / 2}$
Q13. The red line of wavelength 644 nm in the emission spectrum of Cd corresponds to a transition from the ${ }^{1} D_{2}$ level to the ${ }^{1} P_{1}$ level. In the presence of a weak magnetic field, this spectral line will split into (ignore hyperfine structure)
(a) 9 lines
(b) 6 lines
(c) 3 lines
(d) 2 lines

Topic-Atomic, Molecular and Laser physics
Sub topics-Zeeman effect
Ans.: (c)
Solution: The given transition is singlet to singlet which is normal Zeeman effect. In normal zeeman effect we always get three spectral lines.

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
Q14. A neutral particle X^{0} is produced in $\pi^{-}+p \rightarrow X^{0}+n$ by s-wave scattering. The branching ratios of the decay of X^{0} to $2 \gamma, 3 \pi$ and 2π are $0.38,0.30$ and less than 10^{-3}, respectively. The quantum numbers $J^{C P}$ of X^{0} are
(a) 0^{-+}
(b) 0^{+-}
(c) 1^{-+}
(d) $4 \cdot 1^{+-}$

Topic-Nuclear and particle physics

Sub-topic: Particle Physics
Ans.: (b)
Solution: $X^{0} \rightarrow 2 \pi$ or $X^{0} \rightarrow 3 \pi$ clearly shows that the spin $J=0$

$$
\begin{gathered}
X^{0} \rightarrow \gamma+\gamma \\
J=\overrightarrow{1}+\overrightarrow{1}=2,1,0 \\
X^{0} \rightarrow \pi+\pi \\
0=0+0 \\
X^{0} \rightarrow \pi+\pi \\
0=0+0
\end{gathered}
$$

Since, the maximum number of X decaying to 2γ.
The charge conjugation for photon is -1

$$
\begin{aligned}
& X^{0} \rightarrow \gamma+\gamma \\
& C=(-1) \times(-1)=1
\end{aligned}
$$

Also, the main equation is strong where the parity is conserved. so the parity is conserved. The parity of fermion is +1 and for boson it is -1 .

$$
\begin{aligned}
& \begin{array}{c}
\pi^{-}+p \rightarrow X^{0}+n \\
(-1) \times 1=(-1) \times 1
\end{array} \\
& \text { Thus, } J^{C P}=0^{+-}
\end{aligned}
$$

Q15. A lattice A consists of all points in three-dimensional space with coordinates $\left(n_{x}, n_{y}, n_{z}\right)$ where n_{x}, n_{y} and n_{z} are integers with $n_{x}+n_{y}+n_{z}$ being odd integers. In another lattice $\mathrm{B}, n_{x}+n_{y}+n_{z}$ are even integers. The lattices A and B are
(a) Both $B C C$
(b) Both FCC
(c) $B C C$ and $F C C$ respectively
(d) $F C C$ and $B C C$ respectively

Topic-Solid State Physics
Sub-topic-Crustal structure
Ans.: (b)

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
Q16. The charge density and current of an infinitely long perfectly conducting wire of radius a, which lies along the z-axis, as measured by a static observer are zero and a constant I, respectively. The charge density measured by an observer, who moves at a speed $v=\beta c$ parallel to the wire along the direction of the current, is
(a) $-\frac{I \beta}{\pi a^{2} c \sqrt{1-\beta^{2}}}$
(b) $-\frac{I \beta \sqrt{1-\beta^{2}}}{\pi a^{2} c}$
(c) $\frac{I \beta}{\pi a^{2} c \sqrt{1-\beta^{2}}}$
(d) $\frac{I \beta \sqrt{1-\beta^{2}}}{\pi a^{2} c}$

Topic-Electromagnetic theory
Sub-topic-Relativistic electrodynamics
Ans.: (a)
Solution: $\rho=\frac{\rho^{\prime}+\frac{(-v) J_{z}^{\prime}}{c^{2}}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=\frac{0-\frac{v}{c^{2}} \cdot \frac{I}{\pi a^{2}}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=\frac{-\beta I}{\pi a^{2} c \sqrt{1-\beta^{2}}}$
Q17. The electric and magnetic fields at a point due to two independent sources are $\mathrm{E}_{1}=E(\alpha \hat{\imath}+$ $\beta \hat{\jmath}), \mathrm{B}_{1}=B \hat{k}$ and $\mathrm{E}_{2}=E \hat{\imath}, \mathrm{~B}_{2}=-2 B \hat{k}$, where α, β, E and B are constants. If the Poynting vector is along $\hat{\imath}+\hat{\jmath}$, then
(a) $\alpha+\beta+1=0$
(b) $\alpha+\beta-1=0$
(c) $\alpha+\beta+2=0$
(d) $\alpha+\beta-2=0$

Topic-Electromagnetic theory

Sub topic-Poynting vector
Ans.: (d)
Solution: $S_{1}=E_{1} \times B_{1}=E B(-\alpha j+\beta i)$

$$
\begin{aligned}
& S_{2}=E_{2} \times B_{2}=-2 E B j \Rightarrow S=S_{1}+S_{2}=E B i+E B(2-\alpha) j \\
& \Rightarrow \vec{A}=\hat{i}+\hat{j} \\
& \Rightarrow S \times A=0 \Rightarrow S \times A=0\left|\begin{array}{ccc}
i & j & k \\
E B & E B(2-\alpha) & 0 \\
1 & 1 & 0
\end{array}\right| \\
& \Rightarrow E B(2-\alpha)-E B \beta=0 \Rightarrow E B(2-\alpha-\beta)=0 \Rightarrow \alpha+\beta=2
\end{aligned}
$$

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
Q18. The electron cloud (of the outermost electrons) of an ensemble of atoms of atomic number Z is described by a continuous charge density $\rho(r)$ that adjusts itself so that the electrons at the Fermi level have zero energy. If $V(r)$ is the local electrostatic potential, then $\rho(r)$ is
(a) $\frac{e}{3 \pi^{2} \hbar^{3}}\left[2 m_{e} e V(r)\right]^{3 / 2}$
(b) $\frac{\mathrm{Ze}}{3 \pi^{2} \hbar^{3}}\left[2 m_{e} e V(r)\right]^{3 / 2}$
(c) $\frac{Z e}{3 \pi^{2} \hbar^{3}}\left[Z m_{e} e V(r)\right]^{3 / 2}$
(d) $\frac{e}{3 \pi^{2} \hbar^{3}}\left[m_{e} e V(r)\right]^{3 / 2}$

Ans.: (a)
Solution: From the concept of Fermi gas model

$$
e V(r)=\frac{\hbar^{2}}{2 m_{e}}\left(3 \pi^{2} \rho(r)\right)^{2 / 3} \Rightarrow \rho(r)=\frac{e}{3 \pi^{2} \hbar^{3}}\left(2 m_{e} e V(r)\right)^{3 / 2}
$$

Q19. The matrix $R_{\widehat{\mathrm{n}}}(\theta)$ represents a rotation by angle θ about the axis $\hat{\mathrm{n}}$. The value of θ and $\hat{\mathrm{n}}$ corresponding to the matrix $\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -\frac{1}{3} & \frac{2 \sqrt{2}}{3} \\ 0 & \frac{2 \sqrt{2}}{3} & \frac{1}{3}\end{array}\right)$ respectively, are
(a) $\pi / 2$ and $\left(0,-\sqrt{\frac{2}{3}}, \frac{1}{\sqrt{3}}\right)$
(b) $\pi / 2$ and $\left(0, \frac{1}{\sqrt{3}}, \sqrt{\frac{2}{3}}\right)$
(c) π and $\left(0,-\sqrt{\frac{2}{3}}, \frac{1}{\sqrt{3}}\right)$
(d) π and $\left(0, \frac{1}{\sqrt{3}}, \sqrt{\frac{2}{3}}\right)$

Topic-Mathematical Physics
Sub topic-Matrix
Ans.:

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
Q20. In the circuit shown below, four silicon diodes and four capacitors are connected to a sinusoidal voltage source of amplitude $V_{\text {in }}>0.7 \mathrm{~V}$ and frequency 1 kHz . If the knee voltage for each of the diodes is 0.7 V and the resistances of the capacitors are negligible, the DC output voltage $V_{\text {out }}$ after 2 seconds of starting the voltage source is closest to

(a) $4 V_{\text {in }}-0.7 \mathrm{~V}$
(b) $4 V_{i n}-2.8 \mathrm{~V}$
(c) $V_{\text {in }}-0.7 \mathrm{~V}$
(d) $V_{\text {in }}-2.8 \mathrm{~V}$

Topic-Electronics

Sub-Diode
Ans.: (b)

Solution:

If we apply KVL that will provide

$$
-V_{i n}+V_{D 1}+V_{C 1}=0 \Rightarrow V_{C 1}=V_{\text {in }}-V_{D 1}=V_{\text {in }}-0.7 \mathrm{~V}
$$

In the positive half cycle of input D_{1} and D_{3} becomes reverse bias. On the other hand D_{2} and D_{4} are forward bias.

$$
-V_{i n}+V_{D 2}-V_{C 1}+V_{C 2}=0 \Rightarrow V_{C 2}=2 V_{i n}-1.4 V
$$

In the positive half cycle of input D_{1} and D_{3} becomes forward bias. On the other hand D_{2} and D_{4} are reverse bias.

PraVegaal Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
$V_{D 1}-V_{C 3}-V_{D 3}+V_{C 2}=0 \Rightarrow V_{C 3}=2 V_{i n}+1.4 V$
In the next half cycle, D_{1} and D_{3} becomes reverse bias. On the other hand D_{2} and D_{4} are forward bias. If we apply KVL
$V_{C 4}=2 V_{\text {in }}-1.4 \mathrm{~V}$
$V_{\text {out }}=4 V_{\text {in }}-2.8 \mathrm{~V}$
Q21. A layer of ice has formed on a very deep lake. The temperature of water, as well as that of ice at the ice-water interface, are $0^{\circ} \mathrm{C}$ whereas the temperature of the air above is $-10^{\circ} \mathrm{C}$. The thickness $L(t)$ of the ice increases with time t. Assuming that all physical properties of air and ice are independent of temperature, $L(t) \sim L_{0} t^{\alpha}$ for large t. The value of α is
(a) $\frac{1}{4}$
(b) $\frac{1}{3}$
(c) $\frac{1}{2}$
(d) 4.1

Topic-Mathematical Physics
Sub-Laplace transformation
Ans. : (c)
Solution: The Laplace Transform Pair

$$
\begin{aligned}
& \sin x \Leftrightarrow \frac{1}{s^{2}+1} \\
& x \sin x \Leftrightarrow-\frac{d}{d s} \frac{1}{s^{2}+1} \\
& x \sin x \Leftrightarrow-\frac{d}{d s}\left(s^{2}-1\right)^{-1} \\
& \quad\left(s^{2}+1\right)^{-2} \cdot 2 s
\end{aligned}
$$

$s=1$, So, the value of integral is $(1+1)^{-2} \cdot 2 \cdot 1=\frac{2}{4}=\frac{1}{2}$

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
Q22. The Hall coefficient R_{H} of a sample can be determined from the measured Hall voltage $V_{H}=\frac{1}{d} R_{H} B I+R I$ where d is the thickness of the sample, B is the applied magnetic field, I is the current passing through the sample and R is an unwanted offset resistance. A lock-in detection technique is used by keeping I constant with the applied magnetic field being modulated as $B=B_{0} \sin \Omega t$, where B_{0} is the amplitude of the magnetic field and Ω is frequency of the reference signal. The measured V_{H} is
(a) $B_{0} \frac{R_{H} I}{d}$
(b) $\frac{B_{0}}{\sqrt{2}} \frac{R_{H} I}{d}$
(c) $\frac{I}{\sqrt{2}}\left(\frac{B_{0} R_{H} I}{d}+R\right)$
(d) $I\left(\frac{B_{0} R_{H}}{d}+R\right)$

Sub topic-Hall coefficient

Ans.: (b)
Solution: $V_{H}=\frac{1}{d} R_{H} B I+R I$
$B=B_{0} \sin (\omega t)$
$\left(V_{H}\right)_{A C}=\frac{1}{d} R_{H} B(t) I=\frac{1}{d} R_{H} I B_{0} \sin (\omega t)$
$\left(\left(V_{H}\right)_{A C}\right)_{r m s}=\frac{1}{\sqrt{2} d} R_{H} I B_{0}$
$\left(V_{H}\right)_{R M S}=\frac{\beta_{0}}{\sqrt{2}} \frac{R_{H} I}{d}$
Q23. A train of impulses of frequency 500 Hz , in which the temporal width of each spike is negligible compared to its period, is used to sample a sinusoidal input signal of frequency 100 Hz . The sampled output is
(a) Discrete with the spacing between the peaks being the same as the time period of the sampling signal
(b) a sinusoidal wave with the same time period as the sampling signal
(c) discrete with the spacing between the peaks being the same as the time period of the input signal
(d) a sinusoidal wave with the same time period as the input signal

Topic-Electronics

Ans.: (a)

Q24. The value of the integral $\int_{-\infty}^{\infty} d x 2^{-\frac{|x|}{\pi}} \delta(\sin x)$ where $\delta(x)$ is the Dirac delta function, is
(a) 3
(b) 0
(c) 5
(d) 1

Topic-Mathematical Physics

Sub topic-Integration

Ans. : (a)
Solution: $\delta(\sin x)=\frac{\sum(x-n \pi)}{|\cos n \pi|}$

$$
\int_{-\infty}^{\infty} 2^{-\frac{x}{\pi}} \delta(\sin x) d x=\sum_{n} \int_{-\infty}^{\infty} 2^{-\frac{x}{\pi}} \delta(x-n \pi) d x=\sum_{n=-\infty}^{n=\infty} 2^{-|n|}=1+\left(2^{-1}+2^{-2}+2^{-3} \ldots \ldots \ldots .\right)=1+2 \frac{2^{-1}}{1-\frac{1}{2}}=3
$$

Q25. The energy (in keV) and spin-parity values $E\left(J^{P}\right)$ of the low-lying excited states of a nucleus of mass number $A=152$ are $122\left(2^{+}\right), 366\left(4^{+}\right), 707\left(6^{+}\right)$and $1125\left(8^{+}\right)$. It may be inferred that these energy levels correspond to a
(a) rotational spectrum of a deformed nucleus
(b) rotational spectrum of a spherically symmetric nucleus
(c) vibrational spectrum of a deformed nucleus
(d) vibrational spectrum of a spherically symmetric nucleus

Topic-Nuclear and particle physics
Sub-topic: Collective model
Ans. : (a)
Solution: As we know that the large size nucleus either shows rotational or vibration spectrum. The nucleus having mass no $A<150$ shows vibrational spectra. On the other hand, the nucleus having mass no $150<A<200$ or $A>230$ shows the rotational spectra. They have high electrical quadrupole moment implies they have deformed shape.

Q26. Electrons polarized along the x -direction are in a magnetic field

$$
B_{1} \hat{i}+B_{2}(\cos \omega t \hat{j}+\sin \omega t \hat{k})
$$

where $B_{1}>B_{2}$ and ω are positive constants. The value of $\hbar \omega$ for which the polarization-flip process is a resonant one, is
(a) $2 \mu_{B}\left|B_{2}\right|$
(b) $\mu_{B}\left|B_{1}\right|$
(c) $\mu_{B}\left|B_{2}\right|$
(d) $2 \mu_{B}\left|B_{1}\right|$

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
Ans.: (d)
Solution: Since the polarization along z direction, thus $S=S \hat{x}$
The interaction energy $h \omega=\vec{S} \cdot \vec{B}=2 \mu_{B}\left|B_{1}\right|$
Q27. The dispersion relation of electrons in three dimensions is $\varepsilon(k)=\hbar v_{F} k$, where v_{F} is the Fermi. If at low temperature $T \ll T_{F}$ the Fermi energy ε_{F} depends on the number density n as $\varepsilon_{F}(n) \sim n^{\alpha}$, the value of α is
(a) $1 / 3$
(b) $2 / 3$
(c) 1
(d) $3 / 5$

Topic-Solid State Physics

Sub-Dispersion relation
Ans.: (a)
Solution: $\varepsilon(k)=\hbar v_{F} k$

$$
\begin{aligned}
& \text { At Low temperature } T \ll T_{F} \\
& \varepsilon_{F} \alpha n^{\alpha} \\
& N=\frac{2 \times \frac{4}{3} \pi k^{3}}{(2 \pi)^{3}} \\
& N=\frac{8 \pi}{3} \frac{k_{F}^{2} L^{3}}{8 \pi^{3}}=\frac{k_{F}^{2} v}{3 \pi^{2}} \\
& n=\frac{N}{V}=\frac{1}{3 \lambda^{2}}\left(\frac{E_{F}}{\hbar v_{F}}\right)^{3} \\
& \varepsilon_{F}=n^{1 / 2}
\end{aligned}
$$

Q28. If the Bessel function of integer order n is defined as $J_{n}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!(n+k)!}\left(\frac{x}{2}\right)^{2 k+n}$ then $\frac{d}{d x}\left[x^{-n} J_{n}(x)\right]$ is
(a) $-x^{n+1} J_{n+1}(x)$
(b) $-x^{n+1} J_{n-1}(x)$
(c) $-x^{n} J_{n-1}(x)$
(d) $-x^{n} J_{n+1}(x)$

Topic-Mathematical Physics
Sub-Special function
Ans.: (a)
Solution: Put $n=0, \frac{d}{d x} J_{0}(x)=-x J_{1}(x)$

Website: www.pravegaa.com | Email: pravegaaeducation@gmail.com

Pravegaee Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
Q29. The phase shifts of the partial waves in an elastic scattering at energy E are $\delta_{0}=12^{0}, \delta_{1}=4^{0}$ and $\delta_{l \geq 2}=0^{0}$. The best qualitative depiction of θ dependence of the differential scattering cross-section $\frac{d \sigma}{d \cos (\theta)}$ is

Topic-Quantum mechanics

Sub-Scattering

Ans.: (b)
Solution: The form factor is given by $f(\theta)=\frac{1}{k} \sum_{l}(2 l+1) \exp i \delta_{l} \sin \delta_{l} p_{l}(\cos \theta)$
The differential scattering cross section is given by

$$
D(\theta)=|f(\theta)|^{2}=f^{*}(\theta) f(\theta)=\sum_{i} \sum_{l}\left(2 l^{\prime}+1\right)(2 l+1) \exp -i \delta_{i} \exp i \delta_{l} \sin \delta_{i} \sin \delta_{l} p_{i}(\cos \theta) p_{l}(\cos \theta)
$$

It is given only $l=0$ and $l=1$ is active
So $D(\theta)=\sin ^{2} \delta_{0}+9 \sin ^{2} \delta_{1}\left(p_{1}(\cos \theta)\right)^{2}+3 \exp -i \delta_{0} \exp i \delta_{1} \sin \delta_{1} \sin \delta_{0} p_{1}(\cos \theta)+$ $3 \exp -i \delta_{1} \exp i \delta_{0} \sin \delta_{1} \sin \delta_{0} p_{1}(\cos \theta)$
$D(\theta)=\sin ^{2} \delta_{0}+9 \sin ^{2} \delta_{1}\left(p_{1}(\cos \theta)\right)^{2}+3 \sin \delta_{1} \sin \delta_{0} p_{1}(\cos \theta)\left(\exp i\left(\delta_{1}-\delta_{0}\right)+\exp -i\left(\delta_{1}-\delta_{0}\right)\right)$
$D(\theta)=\sin ^{2} \delta_{0}+9 \sin ^{2} \delta_{1} \cos ^{2} \theta+6 \sin \delta_{1} \sin \delta_{0} \cos \theta \cos \left(\delta_{1}-\delta_{0}\right)=$

Pravegaal Education

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics
$\sin ^{2} \delta_{0}+9 \sin ^{2} \delta_{1} \cos ^{2} \theta+6 \sin \delta_{1} \sin \delta_{0} \cos \left(\delta_{1}-\delta_{0}\right) \cos \theta=$
$D(\theta)=\sin ^{2} \delta_{0}+9 \sin ^{2} \delta_{1} \cos ^{2} \theta+6 \sin \delta_{1} \sin \delta_{0} \cos \left(\delta_{1}-\delta_{0}\right) \cos \theta=$
$\delta_{0}=12, \delta_{1}=4 \sin 12=0.2, \sin 4=0.07 \cdot \cos 8=0.99$
$D(\theta)=.04+9 \times 0.0049 \cos ^{2} \theta+6 \times .2 \times .07 \times .99 \cos \theta=0.04+0.044 \cos ^{2} \theta+.08 \cos \theta$
$D(\theta)=.04+9 \times 0.0049 \cos ^{2} \theta+3 \times .14 \cos \theta=0.04+0.044 \cos ^{2} \theta+0.08 \cos \theta$
For $\theta=0, D(\theta)=0.16, \theta=\frac{\pi}{4}, D(\theta)=0.11, \theta=\frac{\pi}{2}, D(\theta)=0.04, \theta=\pi D(\theta) \simeq 0$
Q30. Two operators A and B satisfy the commutation relations $[H, A]=-\hbar \omega B$ and $[H, B]=\hbar \omega A$ where ω is a constant and H is the Hamiltonian of the system. The expectation value $\langle A\rangle_{\varphi} t=\langle\varphi| A|\varphi\rangle$ in a state φ such that at time $t=0 \quad A_{\varphi}(0)=0$ and $B_{\varphi}(0)=0$ is
(a) $\sin (\omega t)$
(b) $\sinh (\omega t)$
(c) $\cos (\omega t)$
(d) $\cosh (\omega t)$

Topic-Quantum mechanics

Sub-topic- Ehrenfest theorem
Ans. (b)
Solution: $[H, A]=-\hbar \omega B,[H, B]=\hbar \omega A$
Using Ehrenfest theorem $\frac{d\langle A\rangle}{d t}=\frac{1}{i \hbar}\langle[A, H]\rangle+\left\langle\frac{\partial A}{\partial t}\right\rangle$
$\frac{d\langle A\rangle}{d t}=\frac{1}{i \hbar} \hbar \omega\langle B\rangle \Rightarrow \frac{d\langle A\rangle}{d t}=\frac{1}{i} \omega\langle B\rangle \Rightarrow \frac{d}{d t} \frac{d\langle A\rangle}{d t}=\frac{\omega}{i} \frac{d\langle B\rangle}{d t}$
$\frac{d^{2}\langle A\rangle}{d t^{2}}=\frac{\omega}{i} \frac{d\langle B\rangle}{d t}=\frac{\omega}{i}\left\langle\frac{[B, H]}{i \hbar}\right\rangle=\frac{\omega}{i} \frac{(-\omega\langle A\rangle)}{i} \Rightarrow \frac{d^{2}\langle A\rangle}{d t^{2}}=\omega^{2}\langle A\rangle$
$\langle A(t)\rangle=c_{1} \exp \omega t+c_{2} \exp (-\omega t)$ using boundary condition
$\langle A(0)\rangle=0 \Rightarrow c_{2}=-c_{1}=c_{1}(\exp (\omega t)-\exp (-\omega t))$
$\langle B(t)\rangle=\frac{i}{\omega} \frac{d\langle A\rangle}{d t}=\frac{i \omega}{\omega} c_{1}(\exp \omega t+\exp (-\omega t))=i c_{1}(\exp \omega t+\exp (-\omega t))$
$\langle B(0)\rangle=i \Rightarrow 2 i c_{1} \Rightarrow c_{1}=\frac{1}{2}$
$\langle A(t)\rangle=\frac{1}{2}(\exp \omega t-\exp (-\omega t))=\sinh \omega t$

