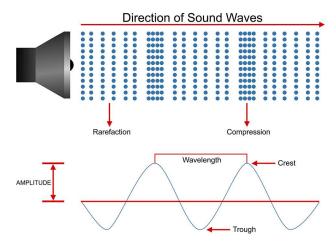


CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

Wave Motion

Speed of transverse wave in string:

$$v=\sqrt{\frac{T}{\mu}}$$
; $T=$ Tension, $\mu=$ Mass per unit length


The up-and-down motion of the rope is perpendicular to the direction of the wave.

Speed of transverse wave in string:

$$y = A\sin(\omega t - kx)$$

The velocity of sound wave can be written as

$$v=\sqrt{\frac{E}{
ho}}$$
 , $E=$ Modulus of elasticity, $ho=$ Density of medium

For Solid

$$E = Y =$$
Young modulus, $Y =$ Stress/Strain

$$v = \sqrt{\frac{Y}{\rho}}$$

For liquid

$$E=B=B$$
 = Bulk modulus, $B=Excess$ pressure/Volume strain

$$B = -v \frac{\Delta p}{\Delta v}$$

$$v = \sqrt{\frac{B}{\rho}}$$

Velocity of sound in glass/air

Newtons assume that velocity propagation is isothermal process.

$$pv = constant$$

$$vdp + pdv = 0$$

$$\Rightarrow p = -\frac{vdp}{dv} = B \Rightarrow v = \sqrt{\frac{p}{\rho}}$$

In air $p = 1.01 \times 10^5 Pa$, $\rho = 1.293 kg/m^3$

$$v = 279.43 \ m/s$$

But in experiment, v = 332 m/s

Later the correction is made by Laplace. He assumed that the speed of sound in air/glass is adiabatic process.

$$pv^{\gamma} = \text{constant}$$

$$v^{\gamma}dp + \gamma p v^{\gamma - 1} dv = 0 \Rightarrow p = -\frac{vdp}{dv} = B$$

Thus,
$$v_{sound} = \sqrt{\frac{\gamma p}{\rho}} = 332 \ m/s$$

We know that

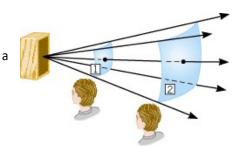
$$PV = nkT, \ n = \frac{m}{M}N_A$$

$$P = \frac{m}{VM} N_A kT \Rightarrow \frac{P}{\rho} = \frac{RT}{M} \Rightarrow v_{sound} = \sqrt{\frac{\gamma RT}{M}}$$

If medium is same but different temperature

$$\frac{v_{sound1}}{v_{sound1}} = \sqrt{\frac{T_1}{T_2}}$$

If medium is different


$$\frac{v_{sound_1}}{v_{sound_2}} = \sqrt{\frac{\gamma_1 T_1 M_2}{\gamma_2 T_2 M_1}}$$

Power of wave (P)

The power is energy transported through perpendicular surface of area a in unit time.

The expression for power can be written as follows

$$P = 2\pi^2 n^2 A^2 \rho vs$$

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

n = Frequency of wave

A =Amplitude of wave

 ρ =Density of medium

v = Velocity

s =Surface area

Again, energy stored per unit volume = $2\pi^2 n^2 A^2 \rho$

Power transported by string wave

$$P = 2\pi^2 n^2 A^2 \rho vs$$

$$\rho s = \frac{m}{ls} s = m/l = \mu$$
 Linear mass density

$$P = 2\pi^2 n^2 A^2 \mu v$$

Energy transported along string in one period

$$E = PT = 2\pi^2 n^2 A^2 \mu v \frac{1}{n} \Rightarrow E = PT = 2\pi^2 n A^2 \mu v$$

Wave intensity

Power transported per unit correctional area is called intensity

$$I = \frac{P}{s} = 2\pi^2 n^2 A^2 \rho v$$

Representing sound wave as a pressure wave

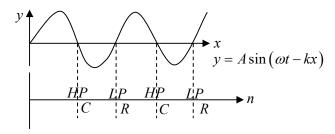
We know that the displacement of wave can be written as follows

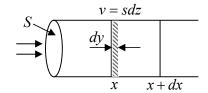
$$y = A\sin(\omega t - kx)$$

$$dv = -kA\cos(\omega t - kx)dx$$

Volume compression $\Delta V = -kA\cos(\omega t - kx)dx$

$$\frac{\Delta V}{V} = -kA\cos(\omega t - kx)$$


Now,
$$B = -V \frac{\Delta P}{\Delta V} = BkA\cos(\omega t - kx)$$


$$\Delta p = BkA\cos(\omega t - kx)$$

$$\Delta p = \Delta p_0 \cos(\omega t - kx);$$

 Δp_0 = Pressure amplitude

$$\Delta p_0 = BKA = BA \frac{2\pi}{\lambda} \Rightarrow A = \frac{\lambda \Delta p_0}{2\pi B}$$

CSIR NET-JRF, GATE, IIT-JAM, JEST, TIFR and GRE for Physics

Intensity of sound wave

$$I = 2\pi^2 n^2 A^2 \rho v; \ v = n\lambda; \ v = \sqrt{\frac{B}{\rho}} \Rightarrow B = \rho v^2$$

$$I = 2\pi^2 \left(\frac{v}{\lambda}\right)^2 \left(\frac{\lambda \Delta p_0}{2\pi B}\right)^2 \rho v; B = \rho v^2$$

$$I = \frac{\left(\Delta \rho_0\right)^2}{2\rho v}; \ v = Wave \ velocity$$